Gene Annotation of the Hypothetical Protein-Coding Genes of

Coxiella Burnetii

A Senior Paper

Presented to

the Department of Biology

of Oral Roberts University

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science

by

Jason Salvato

May 2021

Dr. Celestino Velásquez

Table of Contents

List of Tables	ii
List of Figures	iii
Abstract	xi
Introduction	1
Materials & Methods	26
Results	32
Discussion	253
Acknowledgements	274
Literature Cited	276

List of Tables

Table Number	Title	Page
1	BMW92_RS10760 Gene's Basic Information	34
2	BMW92_RS10830 Gene's Basic Information	72
3	BMW92_RS10835 Gene's Basic Information	118
4	BMW92_RS10840 Gene's Basic Information	162
5	BMW92_RS10855 Gene's Basic Information	213

List of Figures

Figure Number	Title	Page
1	DNA Structure	2
2	Transcription Summary	5
3	Termination of Translation	7
4	Central Dogma of Biology	8
5	General Structures of Amino Acids	9
6	Levels of Structure in Proteins	11
7	Operon Model	14
8	Parasitophorous vacuole of Coxiella burnetii.	22
9	Biphasic Developmental Cycle	23
10	BMW92_RS10760 Amino Acid Make Up	35
11	BMW92_RS10760 BLAST First Match	36
12	BMW92_RS10760 BLAST Second Match	37
13	BMW92_RS10760 BLAST Third Match	38
14	BMW92_RS10760 BLAST Fourth Match	39
15	BMW92_RS10760 BLAST Fifth Match	40
16	BMW92_RS10760 BLAST Sixth Match	41
17	BMW92_RS10760 BLAST Seventh Match	42
18	BMW92_RS10760 BLAST Eighth Match	43
19	BMW92_RS10760 BLAST Ninth Match	44
20	BMW92_RS10760 BLAST Tenth Match	45

21	BMW92_RS10760 BLAST Graphic Summary	46
22	BMW92_RS10760 CDD Results	47
23	BMW92_RS10760 MUSCLE MSA	48
24	BMW92_RS10760 MUSCLE Cladogram	50
25	BMW92_RS10760 MUSCLE Phylogenetic Tree	51
26	BMW92_RS10760 MUSCLE Sequence Logo	52
27	BMW92_RS10760 T-COFFEE MSA	54
28	BMW92_RS10760 T-COFFEE Cladogram	57
29	BMW92_RS10760 T-COFFEE Phylogenetic Tree	58
30	BMW92_RS10760 T-COFFEE Sequence Logo	59
31	BMW92_RS10760 SignalP	62
32	BMW92_RS10760 LipoP	63
33	BMW92_RS10760 TMHMM	64
34	BMW92_RS10760 BOMP	66
35	BMW92_RS10760 PSORTb	67
36	BMW92_RS10760 Phobius	68
37	BMW92_RS10830 Amino Acid Make Up	73
38	BMW92_RS10830 BLAST First Match	74
39	BMW92_RS10830 BLAST Second Match	75
40	BMW92_RS10830 BLAST Third Match	76
41	BMW92_RS10830 BLAST Fourth Match	77
42	BMW92_RS10830 BLAST Fifth Match	78
43	BMW92_RS10830 BLAST Sixth Match	79

44	BMW92_RS10830 BLAST Seventh Match	80
45	BMW92_RS10830 BLAST Eighth Match	81
46	BMW92_RS10830 BLAST Ninth Match	82
47	BMW92_RS10830 BLAST Tenth Match	83
48	BMW92_RS10830 BLAST Graphic Summary	84
49	BMW92_RS10830 CDD Results	85
50	BMW92_RS10830 First Domain Hit	87
51	BMW92_RS10830 Second Domain Hit	88
52	BMW92_RS10830 Third Domain Hit	89
53	BMW92_RS10830 Fourth Domain Hit	90
54	BMW92_RS10830 MUSCLE MSA	91
55	BMW92_RS10830 MUSCLE Cladogram	93
56	BMW92_RS10830 MUSCLE Phylogenetic Tree	94
57	BMW92_RS10830 MUSCLE Sequence Logo	95
58	BMW92_RS10830 T-COFFEE MSA	98
59	BMW92_RS10830 T-COFFEE Cladogram	101
60	BMW92_RS10830 T-COFFEE Phylogenetic Tree	102
61	BMW92_RS10830 T-COFFEE Sequence Logo	103
62	BMW92_RS10830 SignalP	106
63	BMW92_RS10830 LipoP	108
64	BMW92_RS10830 TMHMM	109
65	BMW92_RS10830 BOMP	111
66	BMW92_RS10830 PSORTb	112

67	BMW92_RS10830 Phobius	113
68	BMW92_RS10835 Amino Acid Make Up	119
69	BMW92_RS10835 BLAST First Match	120
70	BMW92_RS10835 BLAST Second Match	121
71	BMW92_RS10835 BLAST Third Match	122
72	BMW92_RS10835 BLAST Fourth Match	123
73	BMW92_RS10835 BLAST Fifth Match	124
74	BMW92_RS10835 BLAST Sixth Match	125
75	BMW92_RS10835 BLAST Seventh Match	126
76	BMW92_RS10835 BLAST Eighth Match	127
77	BMW92_RS10835 BLAST Ninth Match	128
78	BMW92_RS10835 BLAST Tenth Match	129
79	BMW92_RS10835 BLAST Graphic Summary	130
80	BMW92_RS10835 CDD Results	131
81	BMW92_RS10835 First Domain Hit	132
82	BMW92_RS10835 Second Domain Hit	133
83	BMW92_RS10835 Third Domain Hit	134
84	BMW92_RS10835 Fourth Domain Hit	135
85	BMW92_RS10835 MUSCLE MSA	136
86	BMW92_RS10835 MUSCLE Cladogram	138
87	BMW92_RS10835 MUSCLE Phylogenetic Tree	139
88	BMW92_RS10835 MUSCLE Sequence Logo	140
89	BMW92_RS10835 T-COFFEE MSA	143

90	BMW92_RS10835 T-COFFEE Cladogram	145
91	BMW92_RS10835 T-COFFEE Phylogenetic Tree	146
92	BMW92_RS10835 T-COFFEE Sequence Logo	147
93	BMW92_RS10835 SignalP	150
94	BMW92_RS10835 LipoP	151
95	BMW92_RS10835 TMHMM	152
96	BMW92_RS10835 BOMP	154
97	BMW92_RS10835 PSORTb	155
98	BMW92_RS10835 Phobius	156
99	BMW92_RS10840 Amino Acid Make Up	163
100	BMW92_RS10840 BLAST First Match	164
101	BMW92_RS10840 BLAST Second Match	165
102	BMW92_RS10840 BLAST Third Match	166
103	BMW92_RS10840 BLAST Fourth Match	167
104	BMW92_RS10840 BLAST Fifth Match	168
105	BMW92_RS10840 BLAST Sixth Match	169
106	BMW92_RS10840 BLAST Seventh Match	170
107	BMW92_RS10840 BLAST Eighth Match	171
108	BMW92_RS10840 BLAST Ninth Match	172
109	BMW92_RS10840 BLAST Tenth Match	173
110	BMW92_RS10840 BLAST Graphic Summary	174
111	BMW92_RS10840 CDD Results	175
112	BMW92 RS10840 First Domain Hit	176

113	BMW92_RS10840 Second Domain Hit	177
114	BMW92_RS10840 Third Domain Hit	178
115	BMW92_RS10840 Fourth Domain Hit	179
116	BMW92_RS10840 MUSCLE MSA	180
117	BMW92_RS10840 MUSCLE Cladogram	183
118	BMW92_RS10840 MUSCLE Phylogenetic Tree	184
119	BMW92_RS10840 MUSCLE Sequence Logo	185
120	BMW92_RS10840 T-COFFEE MSA	190
121	BMW92_RS10840 T-COFFEE Cladogram	194
122	BMW92_RS10840 T-COFFEE Phylogenetic Tree	195
123	BMW92_RS10840 T-COFFEE Sequence Logo	196
124	BMW92_RS10840 SignalP	201
125	BMW92_RS10840 LipoP	203
126	BMW92_RS10840 TMHMM	204
127	BMW92_RS10840 BOMP	206
128	BMW92_RS10840 PSORTb	207
129	BMW92_RS10840 Phobius	208
130	BMW92_RS10855 Amino Acid Make Up	214
131	BMW92_RS10855 BLAST First Match	215
132	BMW92_RS10855 BLAST Second Match	216
133	BMW92_RS10855 BLAST Third Match	217
134	BMW92_RS10855 BLAST Fourth Match	218
135	BMW92 RS10855 BLAST Fifth Match	219

136	BMW92_RS10855 BLAST Sixth Match	220
137	BMW92_RS10855 BLAST Seventh Match	221
138	BMW92_RS10855 BLAST Eighth Match	222
139	BMW92_RS10855 BLAST Ninth Match	223
140	BMW92_RS10855 BLAST Tenth Match	224
141	BMW92_RS10855 BLAST Graphic Summary	225
142	BMW92_RS10855 CDD Results	226
143	BMW92_RS10855 First Domain Hit	227
144	BMW92_RS10855 Second Domain Hit	228
145	BMW92_RS10855 Third Domain Hit	229
146	BMW92_RS10855 Fourth Domain Hit	230
147	BMW92_RS10855 MUSCLE MSA	231
148	BMW92_RS10855 MUSCLE Cladogram	233
149	BMW92_RS10855 MUSCLE Phylogenetic Tree	234
150	BMW92_RS10855 MUSCLE Sequence Logo	235
151	BMW92_RS10855 T-COFFEE MSA	238
152	BMW92_RS10855 T-COFFEE Cladogram	240
153	BMW92_RS10855 T-COFFEE Phylogenetic Tree	241
154	BMW92_RS10855 T-COFFEE Sequence Logo	242
155	BMW92_RS10855 SignalP	245
156	BMW92_RS10855 LipoP	246
157	BMW92_RS10855 TMHMM	247
158	BMW92_RS10855 BOMP	249

159	BMW92_RS10855 PSORTb	250
160	BMW92_RS10855 Phobius	251

Abstract

Genetic information of organisms and microorganisms has become readily accessible due to advances in genomic sequencing and bioinformatic technology. Despite these advances, there are numerous organisms with genome sequences that have yet to be annotated. Many of these genome sequences require manual annotation, which can uncover hypothetical protein-coding genes. Through the use of publicly available online bioinformatics tools, such as BLAST, T-COFFEE, TMHMM, SignalP, Phobius, and PSORTb, the functions of hypothetical proteincoding genes can be predicted from primary amino acid sequences. Two clusters of properties that aid in determining and predicting the hypothetical genes involve sequence similarity and protein localization. The bioinformatic programs can identify properties such as protein families, conserved domains, signal peptides, and transmembrane regions that belong to the respective clusters. This research project aims to predict the functions of five unannotated hypothetical protein-coding genes in the genome of the bacterium Coxiella burnetii. The genes, BMW92 RS10760, BMW92 RS10830, BMW92 RS10835, BMW92 RS10840, BMW92 RS10855, were annotated, analyzed, and had predicted functions of coding proteins. The specific proteins that were predicted to code from the selected genes were uroporphyrinogen-III synthase, pyrroline-5-carboxylate reductase, pyridoxal phosphatedependent enzyme, phosphoenolpyruvate carboxykinase, and aspartate carbamoyltransferase, respectively. The predicted functions of the hypothetical protein-coding genes provide insight into the proteome of C. burnetii. Ultimately, the proposed gene annotations must be validated through molecular cloning and biochemical methods to determine if these proteins expressed by C. burnetii are accurate in expression and predicted functions by bioinformatic standards.

Introduction

Whether simple or complex, every living organism is made of a basic unit of life—the cell. With every cell that makes up a living organism, there resides a genetic code that exists in genes contained in chromosomes. The genetic code is a blueprint fundamental to life itself. It contains the genetic information necessary for heredity, development, and phenotype. This genetic code is encoded and organized as Deoxyribonucleic Acid (DNA) in every cell nucleus (Klug et al. 2015). However, it was not until 1944 when Oswald Avery, Colin MacLeod, and Maclyn McCarty, researchers at the Rockefeller Institute in New York, published experiments showing that DNA was the carrier of genetic information in bacteria (Tortora et al. 2018).

This discovery later formed the framework of the structure of DNA. DNA is a long, ladder-like macromolecule that twists to form a double helix. Each linear strand of the helix is made up of subunits called nucleotides (Klug et al. 2015). The nucleotide subunit comprises three components: deoxyribose sugar, phosphate group, and a nitrogenous base. In DNA, there are four different nucleotides, each with a unique nitrogenous base, abbreviated A (adenine), G (guanine), T (thymine), and C (cytosine). These four distinct nitrogenous bases are arranged in various sequence combinations held together by weak chemical bonds, called hydrogen bonds, between each base pair along a phosphate deoxyribose backbone (Klug et al. 2015). The two strands of the double helix of DNA are exact complements of one another; thus, adenine (A) always bonds with its complementary base pair thymine (T), and guanine (G) bonds with its complementary base pair cytosine (C) (Figure 1).

Figure 1: Summary of the structure of DNA, illustrating the arrangement of the double helix (on the left) and the chemical components making up each strand (on the right). The dotted lines on the right represent the hydrogen bonds holding together the two strands of the DNA helix along a phosphate deoxyribose backbone (Klug et al. 2015).

Another type of nucleic acid, ribose nucleic acid (RNA), is chemically similar to DNA but differs in three distinct ways. RNA contains ribose rather than deoxyribose, contains the nitrogenous base uracil (U) in place of thymine (T), and is generally a single-stranded molecule (Klug et al. 2015). As a result of generally being single-stranded, RNA does not have hydrogen bonds between the nucleotides but still contains a phosphate pentose sugar backbone that holds together the single strand (Klug et al. 2015). RNA has an arrangement of various sequence combinations of nucleotides that contain genetic information that can potentially turn into a functional gene product. The functional gene products, most often proteins, have the potential for enormous diversity, which are critical components of all cells and organisms. These genetic codes, organized and encoded in DNA, start gene expression, and serve as the core of all living organisms. The genetic information carried by the nucleic acids can be transcribed into RNA and then translated into functional gene products, stated by the central dogma of biology (Klug et al. 2015).

Transcription of DNA to RNA

The central dogma of biology begins with the conversion of DNA into RNA. This conversion occurs through the process of transcription, which is a biological process of replication. To protect the genetic code, the cell organizes and contains original copies of the DNA within the cell's nucleus. This serves as biological protection of the genetic code from damage, degradation, or mutations that could highly occur in the cell's cytoplasm (Klug et al. 2015). Without an original genetic code, no template strand would be available to be transcribed into RNA, and consequently, no functional gene product translated. Thus, the nucleus of a cell houses all DNA and provides a library of many genetic codes that can be copied and turned into functional gene products.

There is a sequence of enzymes that must work together for transcription to take place inside the nucleus. The first sequence of events is the initiation steps. Prokaryotic transcription begins when the initial binding is established when the RNA polymerase σ subunit recognizes specific DNA sequences known as promoters. The promoters are located upstream of the initial transcription of a gene. Enzymes move along the DNA until it encounters a promoter region and binds. The promoter regions consist of known consensus sequences, which are homologous in different genes of the same organism or in multiple genes of closely related organisms (Klug et al. 2015). Two consensus sequences found in many bacterial promoters are "TATAAT" and "TTGACA" which are found upstream of the transcriptional start site (Klug et al. 2015). Once the RNA polymerase σ subunit has bound to the promoter, the DNA double helix is converted into an open structure accessible for the enzyme. Initiation of RNA synthesis begins when 5'ribonucleoside trisphosphates, which complement the template strand nucleotides, are inserted. Subsequent ribonucleotide complements are inserted and linked together by phosphodiester bonds. This process continues in a 5' to 3' direction whereby DNA and RNA chains run antiparallel to one another.

Upon insertion of the initial eight base-pair ribonucleotides, the RNA polymerase σ subunit dissociates from the holoenzyme attached to the open DNA structure, which commences the elongation step of transcription. The core polymerase enzyme traverses the gene's entirety as the RNA chain grows in size with each newly added base until a termination sequence is read. Termination is dependent on the termination sequence, which causes the newly synthesized RNA transcript to fold in a secondary hairpin structure that stops termination; however, in some cases, termination is dependent on a specific termination factor—rho (ρ) —which physically blocks the growing RNA transcript from elongating (Klug et al. 2015). The RNA transcript, which is precisely complementary to the DNA sequence, is released from the enzyme, and termination of transcription is achieved when the core polymerase enzyme dissociates. The newly synthesized RNA molecule will have matching A, T, G, C nitrogenous bases, except every T base is replaced with U (Klug et al. 2015). This transcriptional process has generated an RNA transcript further capable of turning into a gene product and allows the RNA transcript to begin the next stage—translation (Figure 2).

Figure 2: The process of transcription. Step (a) outlines the components assembled for transcription; step (b) outlines the template binding and initiation step; step (c) outlines dissociation of the σ subunit and RNA chain elongation step as the core polymerase enzyme transverse the open DNA structure. The final product of transcription being an RNA transcript capable of entering into the next process of translation (Klug et al. 2015).

Translation of RNA to Protein

Translation is the final step that completes the central dogma of biology. Translation is converting RNA products, generated earlier through transcription, into functional gene products—proteins (Klug et al. 2015). Translation ends with the production of protein; however, the translation process occurs differently across organisms. In prokaryotic cells, the synthesized mRNA does not require transportation to the cytoplasm to begin (Klug et al. 2015). Translation for prokaryotic cells can occur immediately after the mRNA is generated from transcription in the cytoplasm due to the lack of membrane-bound organelles.

The process of translation follows three designated steps. The first step of initiation commences when the organelles necessary for translation are gathered and assembled (Klug et al. 2015). Ribosomes are composed of two subunits; a small (30S) and large (50S) subunit combined to form a functional and active ribosome (Tortora et al. 2018). The assembled ribosome generates three sites within itself—the aminoacyl (A), peptidyl (P), and the exit (E) sites. This first step requires the use of transfer RNA (tRNA), a small RNA molecule needed to decode and carry amino acids to the ribosomes, to be recruited. The tRNA cannot act alone in this step as this molecule requires a ribosomal binding site (RBS), which signals for the ribosome to bind and facilitate translation (Tortora et al. 2018). This specific ribosomal binding site, the Shine-Dalgarno sequence AGGAGGU, is found only in prokaryotes and originates upstream of the translation initiation codon AUG (Tortora et al. 2018). The initiation step ends with the complete assembly of the ribosomal unit and the recruitment of specialized proteins and RNA molecules needed for successful binding in the subsequent translational steps.

The second step of translation is elongation. During this step, the mRNA will move through the ribosome to be decoded and translated into a polypeptide chain. The ribosome reads the mRNA molecule in base pairs of three, known as codons (Klug et al. 2015). The mRNA molecule binds at the ribosome's A site with a start codon—AUG—present on the mRNA. After being read at the A site, the mRNA shifts to the P site where a tRNA molecule deciphers the codon and carries a corresponding amino acid associated explicitly to that codon to be linked to the amino acid present on the tRNA in the A site by a peptide bond (Klug et al. 2015). After the

amino acid has been attached by the tRNA, the mRNA moves to the E site where both the uncharged tRNA and mRNA are released from the large ribosomal subunit (Klug et al. 2015). Elongation is repeated as the mRNA-tRNA-amino acid chain complex is translocated by a distance of three nucleotides in the direction of the P site. The growing polypeptide chain is elongated with each additional amino acid added as the mRNA is translocated three nucleotides through the ribosome.

This process repeatedly continues with a growing amino acid chain until one of three stop codons is recognized, which begins the termination step. Once the stop codon is recognized, it signals for the action of a GTP-dependent release factor. This action stimulates the hydrolysis of the polypeptide from the peptidyl tRNA, leading to its release from the ribosomal complex and the ribosomal complex's dissociation into two subunits (Figure 3) (Klug et al. 2015).

Figure 3: Termination of the process of translation (Klug et al. 2015).

The mRNA transcript is released, charged tRNA is released, and the end of translation results in a polypeptide that folds into native 3-D conformation of protein. This final process of translation of the genetic code completes the central dogma of biology (Figure 4).

Figure 4: Central dogma of Biology (Klug et al. 2015).

After completing translation, the remaining product is a chain of amino acids polymer—held together by peptide bonds (Lehninger et al. 2013). The uniqueness of every amino acid sequence is rooted in the genetic code. Despite the genetic code being made up of only four nucleotides—A, G, T, C—there is great diversity in each amino acid sequence attributed to the availability of 20 different amino acids. This diversity can be attributed to numerous combinations of codons and the genetic code's degeneracy (Lehninger et al. 2013). With 64 possible codon combinations, the genetic code's degeneracy is depicted with a number of those codon combinations coding for the same amino acid. For example, the codons AGC and AGU have a different nucleotide in the third position yet still code for the same amino acid. Every amino acid sequence differs by the amino acids that make up the polypeptide chain. This is dependent on the arrangement of codons and ultimately determined by the sequence of DNA. The redundancy of the genetic code and the numerous arrangements of nucleotides give rise to diverse amino acid sequences and distinct structural protein products essential for living.

Protein Structure

Proteins, composed of varied lengths of amino acids, are essential for many biological processes. The diversity of proteins can be depicted by the different combinations of the possible amino acids. Every amino acid contains a carboxyl (-COOH), hydrogen atom (-H), amine (-NH₂), and variable (R) functional group, specific to each amino acid, bonded to a central carbon atom (Figure 5).

Figure 5: General structure of an amino acid (Lehninger et al. 2013).

There are 20 different amino acids available to make a chain; the combinations can be found with 20^n , where *n* is equal to the number of amino acids in a chain (Lehninger et al. 2013). The combination of proteins exponentially increases with every addition of an amino acid.

The functionality of proteins can be attributed to the different levels and orders of folding and structure. The versatility of proteins occurs as a result of the three-dimensional arrangement of the amino acid monomers, which are the building blocks of proteins. Proteins differ in the number and the type of amino acids within their chain. The qualities and characteristics—acidity, basicity, hydrophobicity, and hydrophilicity—of amino acids are primarily determined from the (R) functional group and interact highly with other linked amino acids (Lehninger et al. 2013). As a result of these interactions, proteins can be organized into a conceptual hierarchy described by levels of complexity. The four levels of protein structure are commonly defined as primary, secondary, tertiary, and quaternary structures.

The primary structure of a protein is the overall determinate of a protein's conformation and function (Lehninger et al. 2013). The primary structure is the linear amino acid sequence produced after translation. The secondary structure of a protein is synthesized through the interactions between amino acid side chains, which give rise to common patterns that turn, coil, and fold into alpha-helices and B-pleated sheets (Lehninger et al. 2013). The tertiary structure of a protein is the furthering of previous folding, turning, and coiling that involves the R-groups and backbones of the amino acids. This gives rise to distinct three-dimensional globular shapes held together by intermolecular forces such as, ionic interactions, hydrogen bonding, hydrophobic forces, ionic bonds, disulfide bonds, and metallic bonds (Lehninger et al. 2013). The fourth level of protein structure is the quaternary structure. This structure develops when one or more folded proteins interact to form a complex. The components of that complex can involve multiple

identical copies or different polypeptide chains. The various levels of structures of proteins lead to the versatility and functionality within cells (Figure 6).

Figure 6: Levels of structure in proteins. (Lehninger et al. 2013).

Gene Regulation

At any point during the production of a functional gene product, there can be numerous regulations regarding that specific gene. Although gene regulation differs in each organism, the commonality is that gene expression is regulated to some degree in every organism. This regulation of gene expression allows certain protein products, whether involved in essential functions of the cell or metabolic pathways, to be produced at a higher or lower frequency dependent on the needs of the cell.

Regulation of gene expression has been studied in cellular activities such as replication, recombination, cell division, and DNA repair (Klug et al. 2015). One of the main benefits of gene regulation is that it allows prokaryotes to adapt to the environment. Specific regulation

allows prokaryotes to produce certain enzymes only when specific chemical substrates are present; these enzymes are known as inducible enzymes. In contrast, some enzymes are produced continuously, regardless of the environment's chemical makeup, which are known as constitutive enzymes (Klug et al. 2015). Furthermore, two systems govern gene regulation. The first system is a repressible system whereby the presence of a specific molecule inhibits gene expression. The second system is an inducible system whereby the presence of a specific molecule stimulates gene expression (Klug et al. 2015). These two systems are governed by either negative or positive control or a combination of both controls. Genetic expression occurs unless it is shut off by some form of a regulator molecule under negative control. In contrast, under positive control, transcription occurs only if a regulator molecule directly stimulates RNA production (Klug et al. 2015).

Notable gene regulators in prokaryotes occur during transcription. For instance, cis-acting elements and trans-acting elements, molecules that bind next to the gene itself or across from the gene, respectively, can promote or repress the binding of RNA polymerases to promoters (Klug et al. 2015). Promoters further display the variability of gene expression that is tightly regulated in prokaryotic cells; strong promoters and weak promoters can regulate the initiation time of transcription from one to two seconds to as little as once every 10 to 20 minutes (Klug et al. 2015). Genes regulation even occurs at the termination process for transcription. When a unique sequence of nucleotides is encountered, the secondary hairpin structure causes the newly formed transcript to fold back on itself; thus, terminating transcription, which can prevent further processing of the transcript and gene expression (Klug et al. 2015).

When examining translation, gene regulation has a major role for successful production gene product. During elongation, the assembled prokaryotic ribosome has two subunits set in

place to regulate gene expression. The small subunit decodes the codons in the mRNA, while the role of the large subunit is peptide-bond synthesis (Klug et al. 2015). This process regulates proper gene expression by minimizing the observable error rate to about 10⁻⁴, as a result, incorrect amino acids insertion will occur only once in every 20 polypeptides of an average length of 500 amino acids (Klug et al. 2015).

Gene regulation has been studied in cellular activities such as replication, recombination, cell division, and DNA repair (Klug et al. 2015). As seen in some bacteria, there are clusters of genes that encode proteins with related functions that are regulated and expressed as a unit. These regions of clustered genes are known as operons. The operon region of a bacterial gene comprises the promoter region, operator region, and adjacent structural genes that are transcribed (Figure 7). This region's importance involves the binding of transcription factors at the promoter or operator regions, which can repress or promote transcription of these genes. The operon region invokes a series of molecular interactions between proteins, inducers, and repressors that aids in regulating genes (Klug et al. 2015).

Figure 7: The operon model. Components and general structure of an operon consists of the regulatory region, structural genes, and operon region (Klug et al. 2015).

The frequency of gene expression varies greatly due to the importance and demand of each gene's function. For instance, a number of operons lack gene regulation due to how necessary those genes products are to the cell. Regulation of gene expression is often linked to the metabolic needs of the cell in which the gene products are necessary for the survival of the cell. The frequency of gene expression can be modified by gene regulation of the cell (Klug et al. 2015). As a result, the evolutionary selection of specific genes occurs to promote the frequency of favored gene products that can increase the likelihood of survival of the organism. Thus, certain genes are highly conserved over many generations due to their importance and necessity.

Evolutionary Selection

Conservation of genes over many generations occurs through evolutionary selection and adaptation. Many genes in various organisms look almost identical. The reason for that can be attributed to microbial evolution which keeps genes that are necessary for survival, homeostasis, and functioning while discarding genes that are not as critically needed (Brock et al. 2017). These prioritized genes are highly conserved, or saved, over periods of time to be passed on from one generation to the next. This microbial evolution process is not able to happen spontaneously. It is a long process that is driven by mutations and other heritable changes that accumulate in the genetic code (Tortora et al. 2018). As DNA is replicated, new copies of the gene are created and passed down to each succeeding generation. The offspring of an organism typically receives an exact copy of the gene. Occasionally, there are mistakes, referred to as mutations, that alter the DNA sequence of the gene (Brock et al. 2017). If the mutations that are accumulated are not repaired, then it creates the opportunity for nonidentical genes to be passed to the progeny.

The evolutionary process begins here whereby mutations of the DNA sequences are repeatedly passed from one generation to the next. Since the gene is altered and is not identical, the organisms are considered two different organisms as a result of the mutations accumulated (Tortora et al. 2018). Although mutations can alter the DNA sequence, not all mutations are the same. Neutral mutations have no effect on the function of the gene or the organism carrying it; whereas, beneficial mutations improve the function of the gene or benefits the organism that carries it. In some instances, mutations are detrimental and worsens or removes the function of the gene which can greatly impede the function, fitness, and survival of the organism carrying it (Brock et al. 2017). Regardless of the mutation type, the new mutant organism will reproduce and begin developing a lineage distinguished from the parent with the original gene copy.

Over time, many original and mutant copies of the organism will develop. Evolutionary trees are developed to outline and display the lineage of genes passing from one generation to the next whereby lineages can acquire their own additional mutations that are distinct from the original gene (Brock et al. 2017). The more mutations that are acquired, the farther the two lineages will appear on an evolutionary tree (Brock et al. 2017). Despite the selected gene of interest looking almost identical to the parental gene, each mutant lineage and gene carries a unique mutational signature.

The longer the gene has had the opportunity to accrue change, the more distinguished the resulting genes will be from the ancestral genes. As each mutation is passed on, a new lineage is produced which can be depicted with family and evolutionary trees. As a result, related families of genes share much in common, yet each have distinguishable mutations. As time progresses, changes to the genetic code can eventually develop genes that are related but have entirely different functions from the previous ancestral genes (Brock et al. 2017). Mutations to the genes

that are beneficial, improve fitness, and increases survival of the organism remain conserved over many generations. Many organisms do not survive or pass on their genes which effectively removes those mutations and gene lineages from the population, clearly displaying the process of evolutionary selection (Tortora et al. 2018).

Evolutionary selection can be examined not only with selected genes or the genetic code, but it can also be seen when examining proteins. Proteins function by folding into particular shapes, structures, and conformations with specific chemical properties that allow them to bind to and interact with the things they work on (Lehninger et al. 2013). These shapes are often found in localized regions of the folded protein called domains. These domains play an important role as they are responsible for particular functions or sub-functions of the protein. Domains are modular and have the ability to combine with other domains to produce an entirely unique function from a stand-alone domain (Lehninger et al. 2013). Over time, proteins with similar function will be related and have similar domains to those in the same lineage (Brock et al. 2017). The combination of modular domains allows for new functions to be assimilated, thereby developing some domains to become critical for functioning and survival. These domains remain conserved and used to build other proteins with high priority; thus, displaying the adaptational process (Brock et al. 2017).

Organisms obtain these variant genes and domains that can potentially increase their fitness and likelihood of survival. Just as gene regulation can increase the frequency of a desired gene, evolutionary selection aids organisms by selecting genes that will benefit the organism most (Brock et al. 2017). Particular genes and domains that are beneficial are often highly conserved throughout generations to maintain this adaptational and evolutionary advantage.

Bioinformatics

Bioinformatics is a specialized field of information technology defined as the storage, retrieval, and analysis of biochemical and biological data generated from genomics and proteomics, usually in the form of DNA and amino acid sequences (Klug et al. 2015). This expanding field of bioinformatics began with an international effort to sequence the human genome. This project, known as the Human Genome Project, began in 1990 and was completed by 2003 (Klug et al. 2015). The completion of the Human Genome Project, bioinformatics software, and hardware for processing nucleic acid sequences, protein sequences, and gene-interaction networks has prompted many scientists to derive nucleotide sequences of organism genomes.

Emerging technology has allowed for the genetic code that instructs life in all organisms to be read and understood. Many of the databases and bioinformatics programs focus on manipulating and analyzing DNA and RNA sequences. There is a wide range of bioinformatics tools and databases at the publics' disposal via the Internet. Through the use of proteomics, the study of all proteins expressed in a cell or tissue, information regarding protein-coding genes and non-coding genes can be stored in databases and give insight into the genetic makeup of living organisms (Klug et al. 2015). The use of bioinformatics opens the possibility of understanding how gene regulation and evolutionary selection of genes occurs. For annotated sequences, this data collected can then be stored and gives way to understanding what possible fates are available for specific genetic codes and the normal or variant genes that can arise from those genetic codes (Klug et al. 2015). This information can direct further investigation of unknown genomes.

As research continues, many model organisms and viruses continue to have their genomes sequenced. As of 2013, over 4300 whole genomes have been sequenced (Klug et al. 2015). These studies have demonstrated many similarities between genomes of nearly all species. Each genetic relationship expands the understanding of the evolutionary selection of similar gene sets used by organisms for essential cellular functions, such as DNA replication, transcription, and translation.

Comparative genomics is a subfield that has developed out of the many bioinformatic studies. This field compares the genomes of different organisms to answer questions about genetics and other aspects of biology through gene discovery and the development of model organisms (Klug et al. 2015). These practical applications' importance is the research that can be conducted to study human diseases, genome evolution, and relationships between organisms and environments. Comparative genomics uses a wide range of techniques and resources, revealing genetic differences and similarities between organisms (Klug et al. 2015). These similarities and differences provide data that can be stored while providing insight into how these differences contribute to differences in life cycle, evolutionary selection, gene expression, and survival (Klug et al. 2015).

Early genome projects have focused on prokaryotes since most prokaryotes have small genomes. Many of the prokaryotic genomes that have already been sequence can be traced to causing many human diseases (Klug et al. 2015). Bioinformatics has opened the availability and flood of genomic information regarding prokaryotic genomes. For example, many bacteria have been identified to have a single, circular chromosome; however, there is substantial variation in chromosome organization and number among bacterial species (Klug et al. 2015). Identification of bacterial genomes composed of linear DNA molecules, two circular chromosomes, or more

than two chromosomes has significantly increased as the software and hardware of bioinformatic program tools advances. Despite all the unknown answers, bioinformatics serves as a tool to provide insight regarding prokaryotic genomes, which can detrimentally interact with eukaryotic genomes, as seen with many human diseases such as cholera, tuberculosis, and leprosy (Klug et al. 2015).

There are many unknowns regarding genomes sequences of organisms. Genomics, proteomics, and bioinformatics have already proven to be valuable for identifying members of multigene families. These multigene families are groups of genes that share similar but not identical DNA sequences through duplication and descent from a single ancestral gene (Klug et al. 2015). These fields of study have provided a solid foundation for future research and studies regarding the organization of protein-coding genes in bacteria. Two generalizations, established by previous genome projects, are that gene density is extremely high in bacterial genomes and bacterial genomes contain operons (Klug et al. 2015). This means that many prokaryotic genomes have tightly packed genes; thus, a high proportion of the DNA serves as coding DNA.

Despite the popularity and advancement in biotechnology, there is still a lack of research conducted to study, annotate, and analyze unknown genomic and proteomic data. This can be attributed to the vastness of the genetic codes in every organism and the limited number of trained scientists able to analyze genetic codes successfully. However, each genome classified, sequenced, and analyzed can be stored in genomic libraries and retrieved through databases. Through the use of these database programs, it allows for comparative analysis between organisms' genetic codes, genomes, and proteomes. As the genomic libraries expand, organisms with genomes waiting to be sequenced can be compared and assessed to previously sequenced organisms stored in database programs.

A variety of database programs were used in this research which were organized through Genomics Educational National Initiative – Annotation Collaboration Toolkit, GENI-ACT. Each program investigated a distinct aspect regarding the genetic sequence selected. Aspects that were investigated during the research included protein localization, sequence similarity, and phylogeny. Protein localization involved the use of programs SignalP, LipoP, TMHMM, BOMP, PSORTb, and Phobius (GENIACT n.d.). Sequence similarity involved the use of BLASTp, CDD, MUSCLE, T-COFFEE, and WebLogo (GENI-ACT n.d.).

The expanding field of bioinformatics has provided an understanding of the molecular basis for hundreds of genetic disorders, therapeutic products, and many living organisms' genetic codes. The advancement of technology has accelerated the rate at which a genome can be sequenced and analyzed. Thus, organisms of different species can easily be studied for data regarding harmful genetic sequences and therapeutic products that can be manipulated from these genetic sequences. A microorganism of interest that is being researched for the treatment of similar ricket zoonosis diseases and is the causative pathogen of Query (Q) fever is the bacteria Coxiella burnetii.

Coxiella burnetii

Coxiella burnetii, an obligate gram-negative bacterium, is the etiologic agent of Query (Q) fever (Gürtler et al. 2014). This highly infectious bacterium is a zoonosis recognized by the World Health Organization and the Centers for Disease Control and Prevention as a dangerous pathogenic agent and potential biological weapon. This bacterium has displayed an ability to infect numerous species ranging from arthropods to mammals (Coleman et al. 2004). However, the main reservoirs of *C. burnetii* has been traced to sheep, goats, cattle, and livestock which are typically infected by ticks and the feces of ticks—the sources of infection (Angelakis and Raoult

2010). The primary mode of transmission for *C. burnetti* involves contact or inhalation of aerosolized infectious particles and droplets or consumption of raw milk products from infected organisms (Coleman et al. 2004).

Knowledge of the pathogen has increased significantly due to the distribution worldwide of Q fever. Currently, there are more than 30 genotypes of *C. burnetii* that have been distinguished by genome analysis (Eldin et al. 2016). *C. burnetii* is part of the family of *Coxiellaceae* bacteria and is phylogenetically related to *Legionellae* spp, *Francisella tularensis*, *Rickettsiella* spp, and many Gammaproteobacteria (Eldin et al. 2016). Development of a phylogenetic tree for *C. burnetii* has displayed the diversity of the 30 genotypes which can be regarded as mutations within co-circulating *Coxiella* strains.

C. burnetii possesses a small circular chromosome of approximately 5 million base pairs. Despite a relatively small number of base pairs, sixteen incomplete genomes have yet to be analyzed or studied (Minnick and Raghavan 2011). Dependent on the host system, *C. burnetii* can replicate differently in the cells of the host species because of synthesis of the bacterium's lipopolysaccharide. This lipopolysaccharide is the main component of this bacterium's cell wall, which aids in protection from immune systems and is essential for the bacterium's virulence (Minnick and Raghavan 2011). However, the chemical composition and molecular heterogeneity of the lipopolysaccharides in *C. burnetii* is distinct from the lipopolysaccharides seen in other gram-negative bacteria. Chemical and immunological characterizations of lipopolysaccharides concluded that the lipopolysaccharides from *C. burnetii* have a structural variation similar to the smooth-to-rough mutational variation of saccharide chain length seen in specific gram-negative bacteria species (Amano and Williams 1984).

Figure 8: Parasitophorous vacuole of *Coxiella burnetii*. Phase-contrast micrograph showing a synchronously infected Vero cell monolayer at four days post infection of *Coxiella burnetii* (Minnick and Raghavan 2011).

Two important characteristics of *C. burnetii* are the environmental stability and virulence of the bacteria. Firstly, the environmental stability can be attributed to the genome which codes for proteins used in the adaptation of stressful environments. Unlike other bacteria within the *Rickettsia* group, *C. burnetii* is highly resistant to adverse physical and chemical agents which allows it to not be limited in host or geographical distribution (Woldehiwet 2004). Secondly, the virulence of *C. burnetii* corresponds to the biphasic development and spore-like particles. This bacterium will often trigger phagolysosomes vacuoles in the host, but *C. burnetii* has been found to code buffering proteins for acidic environments (Minnick and Raghavan 2011). Some evidence has even suggested the intracellular survival of *C. burnetii* can be attributed to the impairments and undermining abilities of the bacteria on macrophage functions and T-cell responses (Akporiaye et al. 1983). It appears the acidic pH activates *C. burnetii* metabolism and initiates replication of the organism. Furthermore, there has been identification of sodium-proton exchangers and transporters for osmoprotectants coded by the genome of this bacterium to help relive osmotic pressure and oxidative stress (Coleman et al. 2004).

The biphasic development cycle occurs through the alternation between phase one and phase two (Figure 9).

Figure 9: Biphasic developmental cycle. Biphasic cycle can be considered a developmental network in which two forms simply alternate into each other (Robertson et al. 2014).

This biphasic development has revealed the presence of an extreme pleomorphism of *C. burnetii*. During the developmental cycle, two morphological cell types, large cell variant (LCV) and small cell variant (SCV), mature with distinct internal structures. The SCV has an outer membrane that is wider and more prominent than that of the LCV (McCaul and Williams 1981). Complex internal membranous intrusions originate from the cytoplasmic membrane in the SCV while the LCV harbors no extensive membranous system. Furthermore, LCVs contained dense bodies in the periplasmic space which resembles an endospore (McCaul and Williams 1981). Overall, the morphogenesis of *C. burnetii* is comparable to cellular differentiation of endospore formation, which consist of a vegetative and sporogenic differentiation period (McCaul and Williams 1981).
The spore-like particles of *C. burnetii* is morphologically similar to endospores of other bacteria species but has distinct properties. One property being the ability to remain infectious for up to 40 months under very unfavorable external conditions (Woldehiwet 2004). The organism's ability to grow and multiply within phagolysosomes and its propensity to establish persistent infection displays many cellular immunity troubles. Morphogenesis and development of *C. burnetii* is typically reliant on specific environmental conditions that can drive the developmental process (Minnick and Raghavan 2011). With the ability of *C. burnetii* to survive in low pH (~5) of phagocytic vacuoles, the response to develop has been attributed to the depletion of critical metabolites such as amino acids which is known to regulate proper prokaryotic development (Woldehiwet 2004).

Phase one is extremely virulent and contagious, which correlates to *C. burnetii* having a SCV morphological cell type as the genome appears to have homologues of sporulation genes and physical properties for environmental transmission (Cole et al. 2004). In contrast, phase two displays low virulence but can persist in non-immunocompetent host system which correlates with the LCV morphological type (Coleman et al. 2004).

The obligate intracellular nature of *C. burnetii* imposes considerable experimental limitations that can impede the progress in understanding the organism's morphogenesis, genome, and proteome. Numerous researchers have encountered the inability to propagate obligate intracellular pathogens like *C. burnetii* under axenic (host cell-free) culture conditions (Omsland et al. 2009). However, recent studies and advances has led to the understanding of *C. burnetii* replicating exclusively in acidified, lysosome-like vacuoles (Omsland et al. 2009). Successful studies involved axenic cultivation of *C. burnetii* which furthered the understanding

of the organism's pathogenesis, genetics, and development of Q fever preventatives that can be developed from other obligate intracellular pathogens (Omsland et al. 2009).

The cellular and molecular biology of *C. burnetii* remains largely undefined. With a vast majority of the genome unexplored and unsequenced, it leaves room for understanding this bacteria's gene expression and protein interaction. As more of the genome is annotated, sequenced, and analyzed, more information regarding this bacterium can be used for potential therapeutic products or help understand other similar intracellular obligate prokaryotes that can be harmful to other organisms. This bioinformatic research involved the annotation and data collection of five protein-coding genes of *Coxiella burnetii*. The five protein-coding genes had data collected, analyzed, and annotated regarding the gene's sequence similarity, protein localization, structure, conserved domains, and phylogenetic relationships.

Materials and Methods

Basic Information

Basic microbial genomic information of the genes of interest were gathered and recorded. This information was obtained through GENI-ACT databases. The information gathered and recorded included the gene of interest, genome, replicon, locus, old locus tag, products, DNA length, protein length, start and end position of gene, genomic coordinates, nucleotide sequence, amino acid sequence, and isoelectric point of amino acid sequence.

Sequence Similarity

BLAST

The National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) server was opened. The Web BLAST section was expanded and the Protein BLAST, "BLASTp", was selected. The amino acid sequence was converted to FASTA format. FASTA format included the character ">" entered without any spacing prior to the gene of interest followed directly by the entire amino acid sequence underneath on the next line. The amino acid sequence was entered in the "Query Sequence" box in FASTA format and the database "Non-redundant protein sequences (nr)" was selected. The "SwissProt" option was deselected to prevent the limited searches and results regarding genomes manually annotated. The BLAST algorithm parameters were unchanged and set for normal search parameters. The BLAST was then processed, and the results page loaded sequences ranked in similarities of highest similarity to lowest similarity. The result output provided the description of the similar proteins as well as their expected value (e-value). The e-value produced depicted the statistical significance between the search results outputted. Any e-values greater than e⁻⁵ were deselected and excluded from the search results. The top ten sequences with significant alignments that were not identical species to the target gene and bacterium were selected. Information of the ten BLAST sequences selected were recorded. The information recorded included the organism name, protein name, percent identity, precent positive, length of alignment match, e-values, and percent gap. A graphic summary was generated from the ten sequences selected which displayed distribution of the top BLAST hits of the ten sequences in relation to the query sequence. Alignment scores were generated in conjunction of the graphic summary detailing the degree of alignment amongst the ten sequences selected.

CDD

The Conserved Domain Database (CDD) of the NCBI was used to identify potential protein domains through the comparison of multiple sequence alignments among domains and full-length proteins. The CDD was automatically ran in parallel with the NCBI BLAST search. The CDD search generated a list of domain hits, which match to protein families such as TigrFam, Cluster of Orthologous Genes (COG), and Pfam. The matches were organized from most conserved to least conserved genes across different organisms and received a corresponding e-value similar to that seen in the BLASTp search. Only domain hits with an e-value less than e⁻⁵ were selected. Information regarding the list of domain hits, name of matches, accession codes, e-values, conserved domain lengths, query sequences conserved, and descriptions of the domain hits were recorded.

MUSCLE

The MUltiple Sequence Comparison by Log Expectation (MUSCLE) software program was used to generate multiple sequence alignments.

From the BLASTp output, ten sequences were selected by clicking "select all" to uncheck all sequences, and then ten sequences from organisms different than the target organism, C. burnetii, with e-values less than e⁻⁵ were chosen. The selected genes were converted to FASTA format by clicking "download" and then "FASTA (complete sequence)" and used to generate a multiple sequence alignment. The FASTA alignment sequences that were downloaded were edited. The gene that was being investigated was put into the beginning line of FASTA with the corresponding amino acid sequence directly below. The FASTA sequences were edited further by placing the name of the organism after the ">" character. The title was composed of an abbreviated version of the organisms genus and species with no spacing between the bracket character and the organism name such as, ">C.burnetii". After the FASTA sequences were edited, the program MUSCLE from EMBL-EBI was loaded. The FASTA format of all ten input sequences were entered into the MUSCLE input box and the output format was selected as "ClustalW", then the task was submitted. The generated multiple sequence alignments were recorded. Additionally, the "Phylogenetic Tree" tab was selected which displayed the neighboring-joining tree without distance corrections. The phylogenetic tree had two options to display branch length. The "Cladogram" and "Real" branch lengths were selected separately and recorded separately.

T-COFFEE

The Tree-based Consistency Objective Function For alignment Evaluation (T-COFFEE) program from EMBL-EBI was loaded and used in conjunction with the MUSCLE software program. The edited FASTA sequences used in the MUSCLE were entered into the T-COFFEE input box. The sequences were submitted, and the generated multiple sequences alignments were recorded. The "Phylogenetic Tree" tab was selected and generated the phylogenetic tree of the

sequences entered from the FASTA sequence. The phylogenetic tree had two options to display branch length. The "Cladogram" and "Real" branch lengths were selected separately and recorded separately.

WEBLOGO

WebLogo was a program used to design and create sequence logos from multiple sequence alignments. The sequence logos provided graphical representation of how often each amino acid or nucleotide was found at a particular position. The WebLogo Version 2.8.2 program, created by the Computational Genomics Research Group from the University of California Berkeley, was loaded. The CLUSTAL multiple sequence alignment generated by MUSCLE and T-COFEE were copied and uploaded into the input box. The parameters and options of the sequence logo were altered under the "Image Format & Size" and "Advanced Logo Options" tabs. The image format was changed from "PNG (bitmap)" to "PDF (vector)." In the "Advanced Logo Options," the "Sequence Type" was selected for amino acid and the "Multiline Logo (symbols per Line)" was selected for 32. After the parameters were set, the "Create Logo" was selected to produce the sequence logo. The results were recorded and analyzed for sequence similarity of conserved amino acid residues across different organisms.

Protein Localization

SIGNALP

The SignalP 5.0 Server developed by the Center for Biological Sequence Analysis (CBS) was loaded and used to predict the presence of signal peptides and the location of cleavage sites in proteins from Archaea, Gram-positive Bacteria, Gram-negative Bacteria, and Eukarya. The amino acid sequence for the desired gene of interest was inserted into the submission box in FASTA format. The parameters of the search in the software program were changed. The

"Organism group" that was selected was "Gram-negative," which was indicative of Gramnegative Bacteria. The "Output format" was selected as "Long output." After the parameters were selected, the job was submitted. The generated output plot graph and the summary prediction of protein types and cleavage sites were recorded.

LIPOP

The LipoP 1.0 server developed by Denmark Technical University (DTU) Bioinformatics was loaded and used to produce predictions of lipoproteins and discriminates between lipoprotein signal peptides, other signal peptides, and n-terminal membrane helices in Gramnegative bacteria. The amino acid sequence for the desired gene of interest was inserted into the submission box in FASTA format. The "Output format" was then selected for "Extensive, with graphics." The job was submitted after the parameters were set. The result output and the indicated cleavage sites scores, SpI, SpII, TMH, CYT, CleavI, and CleavII values were recorded.

TMHMM

The TMHMM Server v. 2.0 developed by DTU Bioinformatics was loaded and used to predict the presence of transmembrane helices in proteins. The server was loaded and the amino acid sequence for the desired gene of interest was inserted into the submission box in FASTA format. The "Output format" was then selected for "Extensive, with graphics." The parameters were set, and the job was submitted in the server. The outputted graphical image, length of amino acid, number of predicted transmembrane helices, and protein location were all recorded.

BOMP

The beta-barrel outer membrane predicter (BOMP) program from the Computational Biology Unit (CBU) was loaded and used to predict the presence or absence of beta-barrel integral outer membrane proteins. The amino acid sequence for the desired gene of interest was

inserted into the submission box in FASTA format. The parameter regarding the "E-Value" of the search was adjusted and selected as "1⁻⁵." After the parameter of the job was set, the job was submitted in the server. The generated output BOMP result was recorded.

PSORTB

The PSORTb v. 3.0.2 software program developed by Simon Fraser University was loaded and used for the prediction of bacterial protein subcellular localization. The search parameters of the program were selected for the specific organism being researched. The "organism type" was selected as "Bacteria." The "Gram stain" was selected as "Negative." The "Output format" was selected as "Normal" and the "Show results" was selected as "Via the web." The amino acid sequence for the desired gene of interest was inserted into the submission box in FASTA format and the job was submitted. The generated output resulted in an outcome table of three parts. Those three parts were the analysis report, localization scores, and final prediction location scores which were all recorded.

PHOBIUS

The Phobius software program developed by the Stockholm Bioinformatics Centre (SBC) was loaded and used as a combined transmembrane topology and single peptide predictor. The amino acid sequence for the desired gene of interest was inserted into the submission box in FASTA format and the job was submitted. The generated graphical result and the prediction results of signal peptide, cytoplasmic region, non-cytoplasmic region, and transmembrane domains located along the amino acid sequence were all recorded.

Results

The hypothetical protein-coding genes of *Coxiella burnetii* BMW92_RS10760, BMW92_RS10830, BMW92_RS10835, BMW92_RS10840, BMW92_RS10855 were individually retrieved and analyzed with the use of bioinformatics software programs, databases, servers, and tools. As stated in the materials and methods section, the information that was retrieved and analyzed was recorded in the following sequence: basic information, sequence similarity, and protein localization.

BMW92_RS10760

The first gene, BMW92_RS10760, was analyzed using bioinformatic technology. Table 1 below contains the provided data regarding basic information. A protein isoelectric point calculator was used to determine the isoelectric point of the protein, protein length, and the number and prevalence of each amino acid that makes up the protein (Figure 10). The BLASTp search tool produced 100 matches ranked from highest sequence similarity to lowest sequence similarity. The top ten sequences with significant alignments that were not identical species to *Coxiella burnetii* were selected. The information recorded included the organism name, protein name, percent identity, precent positive, length of alignment match, e-values, and percent gap. The highest ranked match to the BMW92_RS10760 gene was uroporphyrinogen-III synthase [*Methylomarinum vadi*] (Figure 11). The remaining nine matches to the BMW92_RS10760 gene all had a function as uroporphyrinogen-III synthase (Figure 12-20). The CDD identified four potential protein domains hits conserved (Figure 21). Each of the domain hits conserved and identified by the CDD belong to the HemD superfamily which spans from 8-267 amino acids in reference to the query sequence. The protein classification identified by the CDD was

uroporphyrinogen-III synthase. Each of the four domain hits were recorded of the sequence similarity to the query sequence (Figure 22). The MUSCLE program generated a multiple sequence alignment (MSA); each amino acid in the sequence was assigned a distinct color to distinguish the amino acids being compared (Figure 23). The MUSCLE program generated two phylogenetic trees using the multiple sequence alignment data (Figure 23 and 25). The T-COFEE program generated another multiple sequence alignment to further confirm sequence similarity depicted by MUSCLE MSA (Figure 27). The T-COFFEE program generated two phylogenetic trees using the multiple sequence alignment data (Figure 28 and 29). WebLogo constructed a sequence logo graphical illustration of the amino acid residues of the gene BMW92 RS10760; each of the letter's heights produced correspond to the conservation of the amino acid residue across similar sequences (Figure 26 & 30). Protein localization results included SignalP, LipoP, TMHMM, BOMP, PSORTb, and Phobius. The SignalP graphical illustration identified that there is no presence of a signal peptide (Figure 31). The LipoP resulted in the highest scoring class being the cytoplasmic protein class (Figure 32). The TMHMM test resulted in a graphical illustration, statistics, and a list of the predicted transmembrane helices and the predicted location of the intervening loop regions. The TMHMM test resulted and displayed that the whole sequence contains no transmembrane helices and that the majority of the amino acid residues have a high probability of being located outside of the membrane (Figure 32). The BOMP test result identified there are no integral beta-barrel outer membrane proteins (Figure 34). The PSORTb test resulted in an analysis report that identified no internal helices, motifs, or signal peptides; the localization scores calculated the predictable location of the protein to be unknown (Figure 35). The Phobius resulted in a graphical illustration that identified no transmembrane helices and classified the protein as non-cytoplasmic (Figure 36).

Basic Information

Genome	Replicon	Locus Tag	Old Locus Tag
Coxiella burnetii	NZ_CP018005	BMW92_RS10760	BMW92_10395
Genomic	Products	Length	Start and End
Coordinates			Position
19525321953338	uroporphyrinogen-III	807 / 268	1952532 - 1953338
	synthase		
Molecular	Average	IPC Protein	Protein Length
Weight	Isoelectric Point		
29687.39284 Da	9.36	8.491	271 amino acids
Nucleotid	le Sequence	Amino A	cid Sequence
atggaaaatgaatcettaaaaa ceetgaatggeaggagagaat aggggeggegeegttatttta ttaataaatgeaactaetegee tteeeggaaagegggagte ggatttetgaatteaagegaaa etgtaaaacatteteetatttaa gttgetattggeacaggtaeeg aetttetgttgatgeegtteeeg ttagatttgeettaeteeateg eeategeggegeaaatgtatt aagacetgtegteaataaaaa aaaegetteatgeaattgtete aatetetgeaettattegaate atecegetegttgteattagea ateteaagggtteeattgeg aaaaggetattataaaggttta	aataaaaccatcatgatcactcg tattaaaaaaagccattgaacgt ttttccaaccettattataaaaaccaa oettegeateegeaagttttecace eggatgataaaatgactaagget atcetcatttttetaagtgeaaatg aatttaaageggaacaaaaatta geegeggetttattteaaegegg gaacattteagtagtgaaggeett ggtgactggaaaaacaattgeta ecettatttaettaeegaegaa aacgattgaegeegaaageeteeaa eacacaaeaetggttaeaegg aacattagegeegaaageeteeaa eacacaacaetggttaeaegg gaacattagegaaaaettag eestagegeegaaageeteeaa eacacaaeaetggtaeaega aacgattgaegaaaaettageaaa eacacaaaetggtaeaaa eacacaaaetggtaeaaa gettetageagaaaatteegagg aaceetaaatateegagtaa	MENESLKNKTIMIT RGGAVILFPTLIIKP SRESGSPDDKMTK VKHSPILNFKAEQØ GLSVDAVPEHFSSE IAIFCGENSRPYLEN RERPVVNKKTIDAJ LQNLCTLFESHQHY LAKSQGFHLVLLA PS	TRPEWQGELLKKAIER PINKCNYSPFASASFPP AGFLNSSDILIFLSANA KLVAIGTGTAAALFQR EGLLDLPLLHQVTGKT NELIHRGANVFSIITYR LTHQTLHAIVSTSAES WLHRIPLVVISKRMEN DNPGEKAIIKVLSTKY

 Table 1: Gene BMW92_RS10760 basic information

Ala	Phe	Val	Cys	Ser	Asp	Lys
21	12	14	3	24	7	19
Met	Gly	Trp	Asn	Thr	Glu	Arg
4	14	2	14	15	17	12
Pro	Ile	Leu	Gln	Tyr	Sec	His
15	22	31	8	4	0	10

Figure 10: Protein isoelectric point calculator. The number and prevalence of each amino acid in the protein coded from the BMW92_RS10760 gene of *Coxiella burnetii* (Kozlowski, Biology Direct, http://isoelectric.org/).

Sequence Similarity

BLAST

uroporphyrinogen-III synthase [Methylomarinum vadi]

Sequence ID: <u>WP_031434600.1</u> Length: 252 Number of Matches: 1

Range 1: 2 to 251 GenPept Graphics

Score		Expect Method	Identities	Positives	Gaps	
145 bits	(366)	1e-38 Compositional matrix adjust.	94/269(35%)	138/269(51%)	26/269(9%)	
Query	3	NESLKNKTIMITRPEWQGELLKKAIER NE L+ K I++TRP Q L + IE+	RGGAVILFPTLI +GG + FPTL	IKPINKCNYSPF I+ + +	ASASFPPSR	62
Sbjct	2	NEQLQAKRILVTRPRHQAGNLCRLIEQ	QGGVAVRFPTLE	IQALER		46
Query	63	ESGSPDDKMTKAGFLNSSDILIFLSAN P+ + L D LIF+SAN	AVKHSPI AV +S	LNFKAEQKLVAI +N +L A+	GTGTAAALF G TA AL	117
Sbjct	47	PETIAARVAALEHVDWLIFISAN	AVNFVLNSNSGI	INRLRRLRLAAV	GKATAKALQ	102
Query	118	QRGLSVDAVPEH-FSSEGLLDLPLLHQ GL+VD +P+H F SE LL P +	VTGKTIAIFCGE V GK I G+	NSRPYLENELIH - R L + L	RGANVFSII RGA+V +	176
Sbjct	103	NNGLTVDLLPQHGFDSESLLRTPAMSA	VDGKRCVIVRGQ	GGREILVDTLRE	RGADVEYLE	162
Query	177	TYRRERPVV-NKKTIDALTHQTLHAIV YRR P N ++ I, I, AI	STSAESLQNLCI TS E+L+NL	LFESHQHWLHRI + L +	PLVVISKRM PLVVIS+R+	235
Sbjct	163	VYRRVMPQADNSALLERLRENRLDAIT	ITSGEALRNLME	MLGGQACLLLPV	PLVVISRRI	222
Query	236	ENLAKSQGFHLVLLADNPGEKAIIKVL +A++ GF ++++D P + +I++ L	ST 264 T			
Sbjct	223	GQMAETMGFKRIVVSDGPADTSILQTL	IT 251			

Figure 11: BLAST first match for BMW92_RS10760 sequence from organism

Methylomarinum vadi with an e-value of 1e-38, 35% identity, 51% positives, 9% gaps

(dissimilarity), and an identity of uroporphyrinogen-III synthase (BLAST,

<https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

uroporphyrinogen-III synthase [Methylovulum psychrotolerans]

Sequence ID: <u>WP_103973100.1</u> Length: 256 Number of Matches: 1

<u>See 1 more title(s)</u> <u>See all Identical Proteins(IPG)</u>

Range 1: 3 to 250 GenPept Graphics

Vext Match 🔺 Previous

Score		xpect Method Identities Positives Gaps
142 bits	s(359)	2e-37 Compositional matrix adjust. 100/269(37%) 134/269(49%) 31/269(11%)
Query	5	SLKNKTIMITRPEWQGELLKKAIERRGGAVILFPTLIIKPINKCNYSPFASASFPPSRES 64
Sbjct	3	GLGGAGVLVTRPAHQAEVLCRLIAEQGGTAIRFPTLAIE 41
Query	65	GSPDDKMTKAGFLNSSDILIFLSANAVKHSPILNFKAEQKLVAIGTGTAAALF 117 + D + N + LIF+SANAV + N KL+A IG TA AL
Sbjct	42	ATADTAAVQTALANLGNFQWLIFISANAVNFALKANGGKIPKLIAPRLAAIGQSTAQALA 101
Query	118	QRGLSVDAVP-EHFSSEGLLDLPLLHQVTGKTIAIFCGENSRPYLENELIHRGANVFSII 176 GL VD VP + F+SE LL PLL OV G+ T T GE R L +L HRGA V T
Sbjct	102	NAGLGVDLVPAQGFNSEALLAEPLLQQVGGQRILIVRGEGGREELAAQLRHRGAEVSYID 161
Query	177	TYRRERPVVNKKTIDA-LTHQTLHAIVSTSAESLQNLCTLFESHQH-WLHRIPLVVISKR 234
Sbjct	162	VYKRVMPDNNASEVQALLTQQRLQAITITSGEALQNLLMMVAPAYHPLLTAIPVIVVSGR 221
Query	235	MENLAKSQGFHLVLLADNPGEKAIIKVLS 263 + +A + GF V++A+ P + A+IK ++
Sbjct	222	LAQMANNLGFKHVVVAEQPADSAMIKAVT 250

Figure 12: BLAST second match for BMW92_RS10760 sequence from organism *Methylomarinum psychrotolerans* with an e-value of 2e-37, 37% identity, 49% positives, 11% gaps (dissimilarity), and an identity of uroporphyrinogen-III synthase (BLAST, https://blast.ncbi.nlm.nih.gov/Blast.cgi).

uroporphyrinogen-III synthase [Methylomonas methanica]

Sequence ID: <u>WP_013820683.1</u> Length: 260 Number of Matches: 1

See 1 more title(s) See all Identical Proteins(IPG)

Range 1: 4 to 249 GenPept Graphics

Vext Match 🔺 Previous

Score		pect Method Identities Positives Gaps	
139 bits	(351)	e-36 Compositional matrix adjust. 96/269(36%) 144/269(53%) 32/269(11%)	
Query	5	LKNKTIMITRPEWQGELLKKAIERRGGAVILFPTLIIKPINKCNYSPFASASFPPSRES 64 L+ T+++TRP Q + L + I + G + FPTL I+PI+	
Sbjct	4	LRGATVLVTRPAAQADTLCRLIAQADGRALRFPTLEIQPID 45	,
Query	65	SPDDKMTKAGFLNSSDILIFLSANAVKHSPILNFKAEQKLVAIGTGTAAALFQ 11 D+ + +	. 8
Sbjct	46	-VDNALIEKALTCNWLIFTSSNAVDFA-LKAFGGKMAGAMAVKLAAVGQATASALQK 10	0
Query	119	GLSVDAVPE-HFSSEGLLDLPLLHQVTGKTIAIFCGENSRPYLENELIHRGANVFSIIT 17 GL V VP+ FSSEGLL P + OV+G+ T T G R LE+ L RGA V +	7
Sbjct	101	GLQVTCVPKTEFSSEGLLAQPAMQQVSGQRIVIVRGMGGREKLEHTLRGRGAEVAYLEV 16	0
Query	178	RRERPVVN-KKTIDALTHQTLHAIVSTSAESLQNLCTLFE-SHQHWLHRIPLVVISKRM 23	5
Sbjct	161	RRCRPDIKCDELIQSLRNQQLNAITITSGEALQNLLTMLDPAAANLLRKQPLIVVSDRI 22	20
Query	236	NLAKSQGFHLVLLADNPGEKAIIKVLST 264 LA GF V ++ P + AI++ L+T	
Sbjct	221	QLALELGFDQVAVSPQPTDAAILETLTT 249	

Figure 13: BLAST third match for BMW92_RS10760 sequence from organism *Methylomarinum methanica* with an e-value of 3e-36, 36% identity, 53% positives, 11% gaps (dissimilarity), and an identity of uroporphyrinogen-III synthase (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

uroporphyrinogen-III synthase [Gammaproteobacteria bacterium]

Sequence ID: MBA2655254.1 Length: 257 Number of Matches: 1

Range 1	: 5 to	251 GenPept Graphics			Next Match	Previou
Score	(2.42)	Expect Method	Identities	Positives	Gaps	
136 bits	(342)	/e-35 Compositional matrix adjust.	95/26/(36%)	13//26/(51%)	26/26/(9%)	
Query	6	LKNKTIMITRPEWQGELLKKAIERRGG L I+ITR O E L+KA+ + G	AVILFPTLIIKE +LFP+L I	PINKCNYSPFASA +N	SFPPSRESG	65
Sbjct	5	LSGLDIIITRAVHQSENLRKAVLQHAG	HPVLFPSLEISV	/LNNSELQ		50
Query	66	SPDDKMTKAGFLNSSDILIFLSANAVK	H-SPILNFKAEQ	KLVAIGTGTAAA	LFQRGLSVD	124
Sbjct	51	MMLGNINDKHLLIFTSQNAVE	VVAPRLPLNLK	PAIGAIGPRTADA	LVNHKIPVD	104
Query	125	AVP-EHFSSEGLLDLPLLHQVTGKTIA	IFCGENSRPYLE	ENELIHRGANVFS	IITYRRERP	183
Sbjct	105	ILPTEKFDSEHLLALPFFEDIRDKKIV	IFGGKGGRLFLE	EDELKRKGASVSK	IAVYQRECP	164
Query	184	VVNKKTIDALTHQTLHAIVSTSAESLQ	NLCTLFESHQ) WI TD+++IS	KRMENLAKS	241
Sbjct	165	SVNRETMEHLVSLPRPLLISTSCESLQ	NVFKIVSSFQQQ	QWLFSIPVLIIS	QRMREEALH	224
Query	242	QGFHLVLLADNPGEKAIIKVLSTKY	266			
Sbjct	225	KGFREEMLILSADPTEPAILERIIKWY	251			

Range 1: 5 to 251 GenPept Graphics

Figure 14: BLAST fourth match for BMW92_RS10760 sequence from organism Gammaproteobacteria bacterium with an e-value of 7e-35, 36% identity, 51% positives, 9% gaps (dissimilarity), and an identity of uroporphyrinogen-III synthase (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

uroporphyrinogen-III synthase [Methylobacter tundripaludum]

Sequence ID: WP_104427303.1 Length: 256 Number of Matches: 1

Range 1	l: 5 to	251 GenPept Graphics		1	Next Match	Previous
Score 133 bits	s(334)	Expect Method 9e-34 Compositional matrix adjust.	Identities 93/269(35%)	Positives 134/269(49%)	Gaps 32/269(11%))
Query	6	LKNKTIMITRPEWQGELLKKAIERRGG	AVILFPTLIIK	PINKCNYSPFAS	ASFPPSRESG	65
Sbjct	5	LNGACVLVTRPEHQAENLSRLIEQRG	VAVRFPTL		EIV	42
Query	66	SPDDKMTKAGFLNSSDILIFLSANA	VKHSPII	LNFKAEQKLVAI	GTGTAAALFQ	118
Sbjct	43	SRDDDRIKSTLENLDGFQWVVFISANA	VNFALKANSGK	IPRTKSVRFAAV	GQATAQAMKM	102
Query	119	RGLSVDAVPEH-FSSEGLLDLPLLHQV	TGKTIAIFCGE	NSRPYLENELIH	RGANVFSIIT	177
Sbjct	103	AGLPVDLVPEYGYNSEALLEMPQLQQV	EGQNCLIVRGE	GGREQLATTLRS	RGAEVDYLEV	162
Query	178	YRRERPVVNKK-TIDALTHQTLHAIVS	TSAESLQNLCT	LF-ESHQHWLHR	IPLVVISKRM	235
Sbjct	163	YKRIIPRMDSSPVVELLAQHRLDVITV	TSAE+LONL	HLGEKNNKLLSL	IPLVV+S R+ IPLVVVSDRI	222
Query	236	ENLAKSQGFHLVLLADNPGEKAIIKVI	ST 264			
Sbjct	223	RCLAADMGFNRITVTDSPIDTAILETV	/IT 251			

Figure 15: BLAST fifth match for BMW92 RS10760 sequence from organism Methylobacter

tundripaludum with an e-value of 9e-34, 35% identity, 49% positives, 11% gaps (dissimilarity), and

an identity of uroporphyrinogen-III synthase (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

uroporphyrinogen-III synthase [Methylobacter luteus]

Sequence ID: <u>WP_027159695.1</u> Length: 257 Number of Matches: 1

Range 1: 4 to 251 GenPept Graphics

Vext Match 🔺 Previou

Score		Expect Method	Identities	Positives	Gaps	
129 bits	(323)	4e-32 Compositional matrix adjust.	86/262(33%)	130/262(49%)	17/262(6%)	
Query	5	SLKNKTIMITRPEWQGELLKKAIERRG L +++TRP Q E L + I+ RG	GAVILFPTLIIK G V+ FP L I	XPINKCNYSPFAS A	ASFPPSRES + +++	64
Sbjct	4	GLNGARVLVTRPAHQAENLSRLIQERG	GEVVRFPVLDI-	VAR	DNIEEVQDA	53
Query	65	GSPDDKMTKAGFLNSSDILIFLSANAV DK F++ + L AN	KHSPILNFKAEÇ K +	KLVAIGTGTAAA + A+G TA A	LFQRGLSVD L GL+VD	124
Sbjct	54	LKNLDKFQWVVFISPNAVNFALKANNG	KIDRLKTV	RFAAVGRATAQA	LEAAGLTVD	109
Query	125	AVPEH-FSSEGLLDLPLLHQVTGKTIA VPE ++SE LL +P + OV G+	IFCGENSRPYLE I GE R L	NELIHRGANVFS N L RGA V	IITYRRERP + Y+R P	183
Sbjct	110	VVPEQGYTSEALLAMPQMQQVKGQACL	IVRGEGGREELA	NTLRSRGAVVQY	LEVYKRTIP	169
Query	184	VVN-KKTIDALTHQTLHAIVSTSAESL ++ + + L O L I TS E+L	QNLCTLF-ESHQ ONL + E++	HWLHRIPLVVIS L IP+VV+S	KRMENLAKS R+ LA	241
Sbjct	170	SIDSSQVVQLLAQQRLDVITVTSGEAL	QNLLIMLGENNE	IQLLLPIPMVVVS	DRIRQLAAG	229
Query	242	QGFHLVLLADNPGEKAIIKVLS 263 GF + + +NP + AI++ ++				
Sbjct	230	MGFKRIAVTENPADTAILETVT 251				

Figure 16: BLAST sixth match for BMW92_RS10760 sequence from organism Methylobacter

luteus with an e-value of 4e-32, 33% identity, 49% positives, 6% gaps (dissimilarity), and an identity

of uroporphyrinogen-III synthase (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

uroporphyrinogen-III synthase [Thiohalophilus thiocyanatoxydans]

Sequence ID: <u>WP_134080327.1</u> Length: 258 Number of Matches: 1

See 1 more title(s)
See all Identical Proteins(IPG)

Range 1: 4 to 251 GenPept Graphics

Vext Match 🔺 Previou:

Score	()	Expect Method	Identities	Positives	Gaps	-
125 bits	\$(315)	6e-31 Compositional matrix adjust.	90/268(34%)	128/268(47%)	30/268(11%)	_
Query	5	SLKNKTIMITRPEWQGELLKKAIERRG L +++TRP O L++ I + G	GAVILFPTLII	X-PINKCNYSPFA P + P	ASASFPPSRE +	63
Sbjct	4	DLAGLRVVVTRPAEÕATALQERITQAG	GRALLFPLLAI	AGPADPARLRPLI	AG	56
Query	64	SGSPDDKMTKAGFLNSSDILIFLSANA	VKHSPII	LNFKAEQKLVAIO	TGTAAALFQ	118
Sbjct	57	LSDTDLLIFVSPNA	VRYGLEQLAAYO	GLPAGSRLACVO	GIA AL Q GLGTARALEQ	103
Query	119	R-GLSVDAVPEH-FSSEGLLDLPLLHQ	VTGKTIAIFCG	ENSRPYLENELIH	IRGANVFSII	176
Sbjct	104	RAGRPPDLLPAGGYDSEALLALPALQQ	VDGQRVVIFRG	QGGREQLAETLRA	ARGAQVEYAE	163
Query	177	TYRRERPVVNKKTIDALTHQTLHAIVS	-TSAESLQNLC	TLFESHQHWLHRI	PLVVISKRM	235
Sbjct	164	VYRRIRPDNDPEQLPDLLRQDAIDIIS	VTSSEALDNLII	EFGAPELERLQRI	PLVV +R+ PLVVFHQRI	223
Query	236	ENLAKSQGFHLVL-LADNPGEKAIIKV	L 262			
Sbjct	224	ADAARRRGFHGPLRVCDQPGDDGLIET	L L 251			

Figure 17: BLAST seventh match for BMW92_RS10760 sequence from organism *Thiohalophilus thiocyanatoxydans* with an e-value of 6e-31, 34% identity, 47% positives, 11% gaps (dissimilarity), and an identity of uroporphyrinogen-III synthase (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

uroporphyrinogen-III synthase [Thiothrix nivea]

Sequence ID: <u>WP_002708856.1</u> Length: 259 Number of Matches: 1

See 1 more title(s) See all Identical Proteins(IPG)

Range 1: 3 to 251 GenPept Graphics

Vext Match 🔺 Previou

Score		Expect Method	Identities	Positives	Gaps	-
124 bits	(310)	3e-30 Compositional matrix adjust.	86/271(32%)	134/271(49%)	33/271(12%)	_
Query	4	ESLKNKTIMITRPEWQGELLKKAIERR E+L+ +++TRP 0 ++ +E+	GGAVILFPTLIJ G +LFP ++1	KPINKCNYSPFA	SASFPPSRE	63
Sbjct	3	ETLRGLNVVVTRPAHQAARFQQMLEQA	GANAVLFPVIVI	APPEQ		46
Query	64	SGSPDDKMTKAGFLNSSDILIFLSANA P T L+S D IF+SANA	VKHSPILNFKAF V+ +	EQKLVA O+ L A	AIGTGTAAAL A+G TA L	116
Sbjct	47	PALAQTMLASLDSYDAAIFISANA	VRFG-LEQLDEN	IQRQTLRKLTLGA	VGKQTAGVL	102
Query	117	FORGLSVDAVP-EHFSSEGLLDLPLLH O G V VP ++SE L LP +	QVTGKTIAIFCO ++ GK I IF O	GENSRPYLENELI	HRGANVFSI RGA+V +	175
Sbjct	103	QQHGFGVQLVPASGYTSEDFLALPAVQ	RLVGKRILIFRO	GAGGREWLADALF	RSRGASVDYV	162
Query	176	ITYRRERPVVNKKTIDALTHQTLHA YRR P ++ + T. H O T.	IVSTSAESLQNI I TS+E L NI	CTLFESHQHWLH	IRIPLVVISK +PL+ S+	233
Sbjct	163	EVYRRICPEIDTSGLK-LRHERQQLDI	IAITSSEGLLNI	LAMLD-NPDWIK	TVPLLAGSQ	220
Query	234	RMENLAKSQGFH-LVLLADNPGEKAII RM A+ GF + +ADNPG++A++	KVLS 263 + L+			
Sbjct	221	RMVEAARQAGFSGTIAIADNPGDEAML	QALT 251			

Figure 18: BLAST eighth match for BMW92_RS10760 sequence from organism *Thiothrix nivea* with an e-value of 3e-30, 32% identity, 49% positives, 12% gaps (dissimilarity), and an identity of uroporphyrinogen-III synthase (BLAST, https://blast.ncbi.nlm.nih.gov/Blast.cgi).

uroporphyrinogen-III synthase [Candidatus Methylobacter oryzae]

Sequence ID: <u>WP_127027931.1</u> Length: 257 Number of Matches: 1

See 1 more title(s) See all Identical Proteins(IPG)

Range 1: 2 to 252 GenPept Graphics

Vext Match 🔺 Previous I

Score		Expect Method	Identities	Positives	Gaps	-
124 bits	(310)	3e-30 Compositional matrix adjust.	91/273(33%)	135/273(49%)	33/273(12%)	_
Query	3	NESLKNKTIMITRPEWQGELLKKAIER	RGGAVILFPTLI	IKPINKCNYSPE	ASASFPPSR	62
Sbjct	2	N+ L I++TRPE Q + L + IE NKLLSGVRILVTRPEHQADNLSRLIEE	+GG + FPTL QGGIAVRFPTL-			39
Query	63	ESGSPDDKMTKAGFLNSSDILIFL E + D+ + L + D+ LIF+	SANAVKHSPILN	JFKAEQKI	VAIGTGTAA	114
Sbjct	40	EIIAKDNALEIKQMLANPDLFQWLIFI	SANAVNFALKAN	IDGKIACTKSVR	TAAVGQSTAQ	99
Query	115	ALFQRGLSVDAVPEH-FSSEGLLDLPL	LHQVTGKTIAI	CGENSRPYLENE	LIHRGANVF	173
Sbjct	100	AT GLTVD VPE TTSE LL TP AMRMAGLNVDLVPESGYNSEALLAMPE	LQQVEGQRFLI	RGEGGREQLATA	L RGA V ALRSRGAEVN	159
Query	174	SIITYRRERPVVNKK-TIDALTHQTLH + YRR P ++ ++ I. +I.	AIVSTSAESLQN + TSAE+LON	NL-CTLFESHQHW	LHRIPLVVI	231
Sbjct	160	YLEVYRRVIPRIDSSPVVELLAQHSLD	IVTVTSAEALQI	ILKLMLDEKNNKI	LSLITLVVV	219
Query	232	SKRMENLAKSQGFHLVLLADNPGEKAI S R+ +A GF+ +++ ++P + AT	IKVLST 264 ++ + T			
Sbjct	220	SNRIRCIAADMGFNRIIVTNSPIDTAI	LETVIT 252			

Figure 19: BLAST ninth match for BMW92_RS10760 sequence from organism *Methylobacter oryzae* with an e-value of 3e-30, 33% identity, 49% positives, 12% gaps (dissimilarity), and an identity of uroporphyrinogen-III synthase (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

uroporphyrinogen-III synthase [Methylomonas lenta]

Sequence ID: <u>WP_066987612.1</u> Length: 259 Number of Matches: 1

See 1 more title(s) See all Identical Proteins(IPG)

Range 1: 5 to 249 GenPept Graphics

Vext Match 🔺 Previous I

Score	(200)	Expect Method	Identities	Positives	Gaps	-
125 013	5(300)		93/207(3070)	155/207(4970)	50/20/(11/0)	-
Query	6	LKNKTIMITRPEWQGELLKKAIERRGG	AVILFPTLIIKI + FPTT. T+1	PINKCNYSPFASA	SFPPSRESG	65
Sbjct	5	LNGAWVLVTRPVAQAEKLCKLITQQNG	QALQFPTLEIQI	PLK		45
Query	66	SPDDKMTKAGFLNSSDILIFLSANAVK	HS-PILNFKAE	QKLVAIGTO	TAAALFQRG	120
Sbjct	46	-VDGELIEKALHCDWLIFTSTNAVD	FALRALSGKMTI	RLHALKLAAVGKA	ATANALQEVG	102
Query	121	LSVDAVPE-HFSSEGLLDLPLLHQVTG	KTIAIFCGENS	RPYLENELIHRGA	NVFSIITYR	179
Sbjct	103	LKVACVPETEFSSEGLLAESAMHRVSS	QRVMIVRGLGGI	REKLAQTLHSRGA	ADVDYLEVYR	162
Query	180	RERPVVNKK-TIDALTHQTLHAIVSTS	AESLONLCTLF-	-ESHQHWLHRIPI	JVVISKRMEN	237
Sbjct	163	RNLPDVDSSLLIQHVQDGQLQASTVTS	AE LONL IT AEGLQNLLTMLI	DEETVVLLQKIPI	JVV+S K++ JVVVSDRLKQ	222
Query	238	LAKSQGFHLVLLADNPGEKAIIKVLST	264			
Sbjct	223	LAT GE VIII P T AIIT LIT LAQQLGFAYVIVSKQPTDAAILETLTT	249			

Figure 20: BLAST tenth match for BMW92_RS10760 sequence from organism *Methylomonas lenta* with an e-value of 8e-30, 36% identity, 49% positives, 11% gaps (dissimilarity), and an identity of uroporphyrinogen-III synthase (BLAST, https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Figure 21: BLAST graphic summary with alignment scores of the top 10 organism sequences similarities selected aligned with *Coxiella burnetii* query sequence of gene BMW92_RS10760. Each of the alignment sequences selected are ordered from highest sequence similarity (top) to lowest sequence similarity (bottom). All organism sequences aligned with the query sequence have an alignment score of 80-200 (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

Figure 22: Conserved Domain Database output results for gene BMW92_RS10760. The top domain hit match was HemD: Uroporphyrinogen-III synthase which aligned with the query sequence from amino acid residues 11-262 and had statistically significant e-value of 2.24e-55. The second domain hit match was HemD: Uroporphyrinogen-III synthase which aligned with the query sequence from amino acid residues 9-262 and had a statistically significant e-value of 7.02e-46. The third domain hit match was hemD: uroporphyrinogen-III synthase which aligned with the query sequence from amino acid residues 8-267 and had a statistically significant e-value of 6.22e-41. The last domain hit match was HEM4: Uroporphyrinogen-III synthase which aligned with the query sequence from amino acid residues 23-260 and had a statistically significant e-value of 8.77e-37 ((BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

MUSCLE

G.bacterium	-MSALLSGLDIIITRAVHQSENLRKAVLQHAGHPVLFPSLEISVLNN	
C.burnetii	MENESLKNKTIMITRPEWQGELLKKAIERRGGAVILFPTLIIKPINKCNYSPFASASFI	? P
M.methanica	-MTLSLRGATVLVTRPAAQADTLCRLIAQADGRALRFPTLEIQPIDV	
M.lenta	-MTTGLNGAWVLVTRPVAQAEKLCKLITQQNGQALQFPTLEIQPLKV	
M.vadi	-MNEQLQAKRILVTRPRHQAGNLCRLIEQQGGVAVRFPTLEIQALER	
M.psychrotolerans	MSGLGGAGVLVTRPAHQAEVLCRLIAEQGGTAIRFPTLAIEATAD	
M.luteus	-MIRGLNGARVLVTRPAHQAENLSRLIQERGGEVVRFPVLDIVARDN	
M.tundripaludum	-MSKVLNGACVLVTRPEHQAENLSRLIEQRGGVAVRFPTLEIVSRDD	
M.oryzae	-MNKLLSGVRILVTRPEHQADNLSRLIEEQGGIAVRFPTLEIIAKDN	
T.nivea	-MPETLRGLNVVVTRPAHQAARFQQMLEQAGANAVLFPVIVIAPPEQ	
T.thiocyanatoxydans	-MGCDLAGLRVVVTRPAEQATALQERITQAGGRALLFPLLAIAGPAD	
	* :::**. *. : : . : ** : *	
G.bacterium	SELQMMLGNINDKHLLIFTSQNAVDVVAPRLPLNLKPAIGAIGPR	۲A
C.burnetii	SRESGSPDDKMTKAGFLNSSDILIFLSANAVKHSPILNFKAEQKLVAIGTG	C A
M.methanica	DNALIEKALTCNWLIFTSSNAVDFALKAFGGKMAGAMAVKLAAVGQA	'A
M.lenta	DGELIEKALHCDWLIFTSTNAVDFALRALSGKMTRLHALKLAAVGKA	'A
M.vadi	PETIAARVAALEHVDWLIFISANAVNFVLNSNSGTINRLRRLRLAAVGKA	۲A
M.psychrotolerans	TAAVQTALANLGNFQWLIFISANAVNFALKANGGKIPKLIAPRLAAIGQS	'A
M.luteus	IEEVQDALKNLDKFQWVVFISPNAVNFALKANNGKIDRLKTVRFAAVGRA	'A
M.tundripaludum	DRIKSTLENLDGFQWVVFISANAVNFALKANSGKIPRTKSVRFAAVGQA	'A
M.oryzae	ALEIKQMLANPDLFQWLIFISANAVNFALKANDGKIACTKSVRFAAVGQS	'A
T.nivea	PALAQTMLASLDSYDAAIFISANAVRFGLE-QLDENQRQTLRKLTLGAVGKQT	'A
T.thiocyanatoxydans	PARLRPLLAGLSDTDLLIFVSPNAVRYGLEQLAAYGGLPAGSRLACVGLG	'A
	* * *** *** ***	* *
G.bacterium	DAL-VNHKIPVDILPTEKFDSEHLLALPFFEDIRDKKIVIFGGKGGRLFLEDELKRKGA	łs
C.burnetii	AAL-FQRGLSVDAVPEH-FSSEGLLDLPLLHQVTGKTIAIFCGENSRPYLENELIHRGA	N
M.methanica	SAL-QKAGLQVTCVPKTEFSSEGLLAQPAMQQVSGQRIVIVRGMGGREKLEHTLRGRGA	\E
M.lenta	NAL-QEVGLKVACVPETEFSSEGLLAESAMHRVSSQRVMIVRGLGGREKLAQTLHSRGA	٩D
M.vadi	KAL-QNNGLTVDLLPQHGFDSESLLRTPAMSAVDGKRCVIVRGQGGREILVDTLRERGA	٩D
M.psychrotolerans	QAL-ANAGLGVDLVPAQGFNSEALLAEPLLQQVGGQRILIVRGEGGREELAAQLRHRGA	Ε
M.luteus	QAL-EAAGLTVDVVPEQGYTSEALLAMPQMQQVKGQACLIVRGEGGREELANTLRSRGA	٩V
M.tundripaludum	QAM-KMAGLPVDLVPEYGYNSEALLEMPQLQQVEGQNCLIVRGEGGREQLATTLRSRGA	\Ε
M.oryzae	QAM-RMAGLNVDLVPESGYNSEALLAMPELQQVEGQRFLIVRGEGGREQLATALRSRGA	١ Ε
T.nivea	GVL-QQHGFGVQLVPASGYTSEDFLALPAVQRLVGKRILIFRGAGGREWLADALRSRGA	١S
T.thiocyanatoxydans	RALEQRAGRPPDLLPAGGYDSEALLALPALQQVDGQRVVIFRGQGGREQLAETLRARGA	٩Q
	.: :* : ** :* : *. ** * * .**	k

G.bacterium	VSKIAVYQRECPSVNRETMEHLVSLPR-PLLISTSCESLQNVFKIVSSFQQQQWLFSIPV
C.burnetii	VFSIITYRRERPVVNKKTI-DALTHQTLHAIVSTSAESLQNLCTLFES-HQH-WLHRIPL
M.methanica	VAYLEVYRRCRPDIKCDELIQSLRNQQLNAITITSGEALQNLLTMLDP-AAANLLRKQPL
M.lenta	vdylevyrrnlpdvdsslliqhvqdgqlqastvtsaeglqnlltmlde-etvvllqkipl
M.vadi	${\tt Veylevyrrvmpqadnsallerlrenrldaititsgealrnlmemlgg-qac-lllpvpl}$
M.psychrotolerans	VSYIDVYKRVMPDNNASEVQALLTQQRLQAITITSGEALQNLLMMVAP-AYHPLLTAIPV
M.luteus	VQYLEVYKRTIPSIDSSQVVQLLAQQRLDVITVTSGEALQNLLIMLGE-NNHQLLLPIPM
M.tundripaludum	VDYLEVYKRIIPRMDSSPVVELLAQHRLDVITVTSAEALQNLSLMLGE-KNNKLLSLIPL
M.oryzae	VNYLEVYRRVIPRIDSSPVVELLAQHSLDIVTVTSAEALQNLKLMLDE-KNNKLLSLITL
T.nivea	VDYVEVYRRICPEIDTSGLKLRHERQQLDIIAITSSEGLLNLLAMLDNPDWIKTVPL
T.thiocyanatoxydans	VEYAEVYRRIRPDNDPEQLPDLLRQDAIDIISVTSSEALDNLIE-FGA-PELERLQRTPL
	* .*.* * : ** *.* *: . : .:
G.bacterium	LIISQRMREEALHKGFREEMLILSADPTEPAILERIIKWYANQSPK
G.bacterium C.burnetii	LIISQRMREEALHKGFREEMLILSADPTEPAILERIIKWYANQSPK VVISKRMENLAKSQGFH-LVLL-ADNPGEKAIIKVLSTKYPS
G.bacterium C.burnetii M.methanica	LIISQRMREEALHKGFREEMLILSADPTEPAILERIIKWYANQSPK VVISKRMENLAKSQGFH-LVLL-ADNPGEKAIIKVLSTKYPS IVVSDRIRQLALELGFD-QVAV-SPQPTDAAILETLTTLLNGENSGRSN
G.bacterium C.burnetii M.methanica M.lenta	LIISQRMREEALHKGFREEMLILSADPTEPAILERIIKWYANQSPK VVISKRMENLAKSQGFH-LVLL-ADNPGEKAIIKVLSTKYPS IVVSDRIRQLALELGFD-QVAV-SPQPTDAAILETLTTLLNGENSGRSN VVVSDRLKQLAQQLGFA-YVIV-SKQPTDAAILETLTTLLSGEKQWPK-
G.bacterium C.burnetii M.methanica M.lenta M.vadi	LIISQRMREEALHKGFREEMLILSADPTEPAILERIIKWYANQSPK VVISKRMENLAKSQGFH-LVLL-ADNPGEKAIIKVLSTKYPS IVVSDRIRQLALELGFD-QVAV-SPQPTDAAILETLTTLLNGENSGRSN VVVSDRLKQLAQQLGFA-YVIV-SKQPTDAAILETLTTLLSGEKQWPK- VVISRRIGQMAETMGFK-RIVV-SDGPADTSILQTLITL
G.bacterium C.burnetii M.methanica M.lenta M.vadi M.psychrotolerans	LIISQRMREEALHKGFREEMLILSADPTEPAILERIIKWYANQSPK VVISKRMENLAKSQGFH-LVLL-ADNPGEKAIIKVLSTKYPS IVVSDRIRQLALELGFD-QVAV-SPQPTDAAILETLTTLLNGENSGRSN VVVSDRLKQLAQQLGFA-YVIV-SKQPTDAAILETLTTLLSGEKQWPK- VVISRRIGQMAETMGFK-RIVV-SDGPADTSILQTLITL IVVSGRLAQMANNLGFK-HVVV-AEQPADSAMIKAVTMCLTGK
G.bacterium C.burnetii M.methanica M.lenta M.vadi M.psychrotolerans M.luteus	LIISQRMREEALHKGFREEMLILSADPTEPAILERIIKWYANQSPK VVISKRMENLAKSQGFH-LVLL-ADNPGEKAIIKVLSTKYPS IVVSDRIRQLALELGFD-QVAV-SPQPTDAAILETLTTLLNGENSGRSN VVVSDRLKQLAQQLGFA-YVIV-SKQPTDAAILETLTTLLSGEKQWPK- VVISRRIGQMAETMGFK-RIVV-SDGPADTSILQTLITL IVVSGRLAQMANNLGFK-HVVV-AEQPADSAMIKAVTMCLTGK VVVSDRIRQLAAGMGFK-RIAV-TENPADTAILETVTIICNGE
G.bacterium C.burnetii M.methanica M.lenta M.vadi M.psychrotolerans M.luteus M.tundripaludum	LIISQRMREEALHKGFREEMLILSADPTEPAILERIIKWYANQSPK VVISKRMENLAKSQGFH-LVLL-ADNPGEKAIIKVLSTKYPS IVVSDRIRQLALELGFD-QVAV-SPQPTDAAILETLTTLLNGENSGRSN VVVSDRLKQLAQQLGFA-YVIV-SKQPTDAAILETLTTLLSGEKQWPK- VVISRRIGQMAETMGFK-RIVV-SDGPADTSILQTLITL IVVSGRLAQMANNLGFK-HVVV-AEQPADSAMIKAVTMCLTGK VVVSDRIRQLAAGMGFK-RIAV-TENPADTAILETVTIICNGE VVVSDRIRCLAADMGFN-RITV-TDSPIDTAILETVITCVTGE
G.bacterium C.burnetii M.methanica M.lenta M.vadi M.psychrotolerans M.luteus M.tundripaludum M.oryzae	LIISQRMREEALHKGFREEMLILSADPTEPAILERIIKWYANQSPK VVISKRMENLAKSQGFH-LVLL-ADNPGEKAIIKVLSTKYPS IVVSDRIRQLALELGFD-QVAV-SPQPTDAAILETLTTLLNGENSGRSN VVVSDRLKQLAQQLGFA-YVIV-SKQPTDAAILETLTTLLSGEKQWPK- VVISRRIGQMAETMGFK-RIVV-SDGPADTSILQTLITL IVVSGRLAQMANNLGFK-HVVV-AEQPADSAMIKAVTMCLTGK VVVSDRIRQLAAGMGFK-RIAV-TENPADTAILETVTIICNGE VVVSDRIRCLAADMGFN-RITV-TDSPIDTAILETVITCVTGE VVVSNRIRCIAADMGFN-RIIV-TNSPIDTAILETVITCVTGE
G.bacterium C.burnetii M.methanica M.lenta M.vadi M.psychrotolerans M.luteus M.tundripaludum M.oryzae T.nivea	LIISQRMREEALHKGFREEMLILSADPTEPAILERIIKWYANQSPK VVISKRMENLAKSQGFH-LVLL-ADNPGEKAIIKVLSTKYPS IVVSDRIRQLALELGFD-QVAV-SPQPTDAAILETLTTLLNGENSGRSN VVVSDRLKQLAQQLGFA-YVIV-SKQPTDAAILETLTTLLSGEKQWPK- VVISRRIGQMAETMGFK-RIVV-SDGPADTSILQTLITL IVVSGRLAQMANNLGFK-HVVV-AEQPADSAMIKAVTMCLTGK VVVSDRIRQLAAGMGFK-RIAV-TENPADTAILETVTIICNGE VVVSDRIRCLAADMGFN-RITV-TDSPIDTAILETVITCVTGE VVVSNRIRCIAADMGFN-RIIV-TNSPIDTAILETVITCVTGE LAGSQRMVEAARQAGFSGTIAI-ADNPGDEAMLQALTHWAQESRQ
G.bacterium C.burnetii M.methanica M.lenta M.vadi M.psychrotolerans M.luteus M.tundripaludum M.oryzae T.nivea T.thiocyanatoxydans	LIISQRMREEALHKGFREEMLILSADPTEPAILERIIKWYANQSPK VVISKRMENLAKSQGFH-LVLL-ADNPGEKAIIKVLSTKYPS IVVSDRIRQLALELGFD-QVAV-SPQPTDAAILETLTTLLNGENSGRSN VVVSDRLKQLAQQLGFA-YVIV-SKQPTDAAILETLTTLLSGEKQWPK- VVISRRIGQMAETMGFK-RIVV-SDGPADTSILQTLITL IVVSGRLAQMANNLGFK-HVVV-AEQPADSAMIKAVTMCLTGK VVVSDRIRQLAAGMGFK-RIAV-TENPADTAILETVTIICNGE VVVSDRIRCLAADMGFN-RITV-TDSPIDTAILETVITCVTGE VVVSNRIRCIAADMGFN-RIIV-TNSPIDTAILETVITCVTGE LAGSQRMVEAARQAGFSGTIAI-ADNPGDEAMLQALTHWAQESRQ VVFHQRIADAARRRGFHGPLRV-CDQPGDDGLIETLRRWRHGE

Figure 23: MUSCLE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10760 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered randomly and are listed from top to bottom as followed: *G. bacterium, C. burnetii, M. methanica, M. lenta, M. vadi, M. psychrotolerans, M. luteus, M. tundripaludum, M. oryzae, T. nivea, T. thiocyanatoxydans*. Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid (MUSCLE, <https://www.ebi.ac.uk/Tools/msa/muscle/>).

Figure 24: MUSCLE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10760 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered randomly and are listed from top to bottom as followed: *G. bacterium, C. burnetii, M. methanica, M. lenta, M. vadi, M. psychrotolerans, M. luteus, M. tundripaludum, M. oryzae, T. nivea, T. thiocyanatoxydans*. The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (MUSCLE, ">https://www.ebi.ac.uk/Tools/msa/muscle/>).

Figure 25: MUSCLE multiple sequence alignment real phylogenetic tree for *Coxiella burnetii* gene BMW92_RS10760 and the top 10 organism sequences similarities selected. Organisms sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered randomly and are listed from top to bottom as followed: *G. bacterium, C. burnetii, M. methanica, M. lenta, M. vadi, M. psychrotolerans, M. luteus, M. tundripaludum, M. oryzae, T. nivea, T. thiocyanatoxydans.* The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (MUSCLE, ">https://www.ebi.ac.uk/Tools/msa/muscle/>).

MUSCLE Sequence Logo

Figure 26: Sequence logo generated from the MUSCLE multiple sequence alignments of *Coxiella burnetii* gene BMW92_RS10760 and the top 10 organism sequences similarities selected. Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid. The conservation of each amino acid among residue across similar sequences is represented by the height of each single letter abbreviation of the amino acid (WebLogo, <https://weblogo.berkeley.edu/logo.cgi>).

T-COFEE

CLUSTAL W (1.83) multiple sequence alignment

C.burnetii	MENESLKNKTIMITRPEWQGELLKKAIERRGGAVILFPTLIIKPINKCNY
G.bacterium	MS-ALLSGLDIIITRAVHQSENLRKAVLQHAGHPVLFPSLEISVLNNS
M.lenta	MT-TGLNGAWVLVTRPVAQAEKLCKLITQQNGQALQFPTLEIQPLKVDG-
M.luteus	MI-RGLNGARVLVTRPAHQAENLSRLIQERGGEVVRFPVLDIVARDNIE-
M.methanica	MT-LSLRGATVLVTRPAAQADTLCRLIAQADGRALRFPTLEIQPIDVDN-
M.oryzae	MN-KLLSGVRILVTRPEHQADNLSRLIEEQGGIAVRFPTLEIIAKDNAL-
M.psychrotolerans	MSGLGGAGVLVTRPAHQAEVLCRLIAEQGGTAIRFPTLAIEATADTA-
M.tundripaludum	MS-KVLNGACVLVTRPEHQAENLSRLIEQRGGVAVRFPTLEIVSRDDD
M.vadi	MN-EQLQAKRILVTRPRHQAGNLCRLIEQQGGVAVRFPTLEIQALERPE-
T.nivea	MP-ETLRGLNVVVTRPAHQAARFQQMLEQAGANAVLFPVIVIAPPEQPA-
T.thiocyanatoxydans	MG-CDLAGLRVVVTRPAEQATALQERITQAGGRALLFPLLAIAGPADPA-
	* * :::**. *. : . : . : ** : *
C.burnetii	SPFASASFPPSRESGSPDDKMTKAGFLNSSDILIFLSANAVKHSPI
G.bacterium	ELQMMLGNINDKHLLIFTSQNAVDVVAP
M.lenta	ELIEKALHCDWLIFTSTNAVDFALRALSG
M.luteus	EVQDALKNLDKFQWVVFISPNAVNFALKANNG
M.methanica	ALIEKALTCNWLIFTSSNAVDFALKAFGG
M.oryzae	EIKQMLANPDLFQWLIFISANAVNFALKANDG
M.psychrotolerans	AVQTALANLGNFQWLIFISANAVNFALKANGG
M.tundripaludum	RIKSTLENLDGFQWVVFISANAVNFALKANSG
M.vadi	TIAARVAALEHVDWLIFISANAVNFVLNSNSG
T.nivea	LAQTMLASLDSYDAAIFISANAVRFGLEQLDE
T.thiocyanatoxydans	RLRPLLAGLSDTDLLIFVSPNAVRYGLEQLAA
	. :* * ***
C.burnetii	LNFKAEQKLVAIGTGTAAALFQ-RGLSVDAVPEH-FSSEGLLDLPLLH
G.bacterium	-RLPLNLKPAIGAIGPRTADALVN-HKIPVDILPTEKFDSEHLLALPFFE
M.lenta	- KMTRLHALKLAAVGKATANALQE - VGLKVACVPETEFSSEGLLAESAMH
M.luteus	-KIDRLKTVRFAAVGRATAQALEA-AGLTVDVVPEQGYTSEALLAMPQMQ
M.methanica	-KMAGAMAVKLAAVGQATASALQK-AGLQVTCVPKTEFSSEGLLAQPAMQ
M.oryzae	-KIACTKSVRFAAVGQSTAQAMRM-AGLNVDLVPESGYNSEALLAMPELQ
M.psychrotolerans	-KIPKLIAPRLAAIGQSTAQALAN-AGLGVDLVPAQGFNSEALLAEPLLQ
M.tundripaludum	-KIPRTKSVRFAAVGQATAQAMKM-AGLPVDLVPEYGYNSEALLEMPQLQ
M.vadi	-TINRLRRLRLAAVGKATAKALQN-NGLTVDLLPQHGFDSESLLRTPAMS
T.nivea	NQRQTLRKLTLGAVGKQTAGVLQQ-HGFGVQLVPASGYTSEDFLALPAVQ
T.thiocyanatoxydans	-YGGLPAGSRLACVGLGTARALEQRAGRPPDLLPAGGYDSEALLALPALQ
	: .:* ** .: :* : ** :*

C.burnetii	Q V T(GKT	IA	IFC	CGE	NSR	PYI	EN	ELI	HF	GA	NVI	FSI	I I I	YF	RE	RF	vvv	NK	KT	-ID
G.bacterium	DIRI	OKK	IV	IFC	GGK	GGR	LFI	EDI	ELK	RK	GA	sv	SKI	IAV	Y YÇ)RF	CI	SV	NR	ET	MEH
M.lenta	RVS	SQR	VM	IVF	۲GL	GGR	EKI	'QA	TLE	ISF	GA	DVI	Y	LEV	/YF	RN	1LE	PDV	D S	SL	LIQ
M.luteus	QVK	gqa	CL	IVF	RGE	GGR	EEI	AN	TLF	SF	GA	vvq	ΩYI	LEV	/YF	(RT	CIE	SI	DS	SQ	vvq
M.methanica	QVS	GQR	IV	IVF	RGM	GGR	EKI	EH'	r LF	۱GF	GA	EV	AYI	LEV	/YF	RC	R	PD1	KC	DE	LIQ
M.oryzae	QVE	GQR	FL	IVF	RGE	GGR	EQI	AT	ALF	SF	GA	EVI	IYN	LEV	/YF	RV	/IF	RI	DS	SP	VVE
M.psychrotolerans	Q V G	GQR	IL	IVF	RGE	GGR	EEI	AA	QLF	RHF	GA	EV	SY	IDV	/YF	KRV	/MF	DN	INA	SE	VQA
M.tundripaludum	QVE	GQN	СL	IVF	RGE	GGR	EQI	AT	TLF	SF	GA	EVI	Y	LEV	/YF	KRI	IIF	'R M	IDS	SP	VVE
M.vadi	AVD	GKR	CV	IVF	RGQ	GGR	EII	' <mark>VD</mark> '	TLF	REF	GA	DVI	EYI	LEV	/YF	RV	7ME	<u>Q</u> A	DN	SA	LLE
T.nivea	RLV	GKR	IL	IFF	RGA	GGR	EWI	AD	ALF	SF	GA	SVI	YYC	VEV	/YF	۱R	CE	PE I	DT	SG	LKL
T.thiocyanatoxydans	QVD	GQR	vv	IFF	RGQ	GGR	EQI	AE	гLF	RAF	GA	QVI	EY/	AEV	/YF	۱R۶	R	D N	IDP	EQ.	LPD
	:	.:		*.	*	• • *	*		*	:	**	*			*:	: *	*	r	•	•	
C.burnetii	ALTI	НQТ	LH	AIV	/ST	SAE	SLÇ	<u>NL</u>	CTI	FF	S-	-HQ	QΗ	VL E	IR]	[PI	JAr	/IS	KR	ME	NLA
G.bacterium	LVS-	-LP	RP	LLI	ST	SCE	SLÇ	<u>NV</u>	FKI	IVS	SF	QQQ	201	NL F	'SI	[PV	7L1	IIS	QR	MR	EEA
M.lenta	HVQI	DGQ	LQ	ASI	ľVT	SAE	GLÇ	<u>NL</u>	LTN	1LC)E-1	ET	VVI	ГГČ)K]	[PI	JAr	7VS	DR	LK	QLA
M.luteus	LLA	QQR	LD	VII	ΓVΤ	SGE	ALC	<u>NL</u>	LIN	1LG	E -1	NNI	IQI	LLI	'b]	[PM	1VV	7VS	DR	IR	QLA
M.methanica	SLRI	QQ	LN	AIT	TT	SGE	ALC	<u>NL</u>	LTN	1LC	P-1	AA	ANI	LLF	Kζ)PI	JIV	7VS	DR	IR	QLA
M.oryzae	LLA	рнs	LD	IVI	V T	SAE	ALÇ	<u>NL</u>	KLN	1LC)E-1	KNI	IKI	LLS	L]	(TI	JAA	7VS	NR	IR	CIA
M.psychrotolerans	LLT	QQR	LQ	NI	TI	SGE	ALC	<u>NL</u>	LMN	1VA	P -2	AYI	IPI	LLI	'A]	[PV	7I V	7VS	GR	LA	QMA
M.tundripaludum	LLA	2HR	LD	VII	ΓVT	SAE	ALC	NL	SLN	1LG	E -1	KNI	NKI	LLS	L]	[PI	JAA	7VS	DR	IR	CLA
M.vadi	RLR	ENR	LD	AIT	TT	SGE	ALF	NL	MEN	1LC	G-G	Q <mark>A</mark> -	-C1	LLI	'b/	7PI	JVV	7IS	RR	IG	QMA
T.nivea	RHEI	RQQ	LD	IIA	ΔIT	SSE	GLI	NL	LAM	1LC	N-]	PDV	NIK	(T)	7PI	LA	GS	QR	MV	EAA
T.thiocyanatoxydans	LLR	2 <mark>DA</mark>	ID	IIS	V T	SSE	ALC	NL	IEF	GA	P-	-E]	LEI	RLÇ	<u>)</u> R'	PI	JAA	7FH	IQR	IA	DAA
					*	* *	•*	*:	:	:				:		.:	::		*	:	*
			-										-								
C.burnetii	KSQC	SFH	ь- 			DNP	GER	AL.		/LS	TK	YP:	5			,					
G.bacterium	LHK	3FR	EE	мгт	LLS	ADP	TEF	AT	LEF	(11	.KW	YAI	NQ	5	PI	<u> </u>					
M.lenta	QQL	GFA	Y-	-V]	EVS	KQP	TDA	AI	LET	гл	TL	LSC	SEF	<u>(</u> QW	IP-	K					
M.luteus	AGM	GFK	R–	-17	AVT	ENP	ADT	AI	LET	'V'I	II	CNC	3			·E					
M.methanica	LEL	GFD	Q–	-V7	AVS	PQP	TDA	AI	LEI	ЪТ	TL	LNC	GEN	ISG	RS	N					
M.oryzae	ADM	GFN	R–	-11	[V]	NSP	IDI	AI	LET	VI	тс	VTC	3			·E					
M.psychrotolerans	NNL	GFK	н–	-V/	/VA	EQP	ADS	AM:	IKA	VT	'MC	LTC	3			·K					
M.tundripaludum	ADM	GFN	R–	-17	ΓVΤ	DSP	IDI	AI	LET	VI	тс	VTC	3			E					
M.vadi	ETM(GFK	R–	-11	/VS	DGP	ADT	SI	LQI	LI	TL										
T.nivea	RQA	GFS	G-	TIF	AIA	DNP	GDE	AM	LQA	ГT	HW	AQI	SF	۶		٠Q					
T.thiocyanatoxydans	RRR	GFH	G–	PLF	RVC	DQP	GDE	GL	IЕТ	LR	RW	RHO	3			E					
		* *				*			••												

Figure 27: T-COFEE multiple sequence alignment for *Coxiella burnetii* gene

BMW92_RS10760 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered randomly and are listed from top to bottom as followed: *C. burnetii*, *G. bacterium*, *M. lenta*, *M. luteus*, *M. methanica*, *M. oryzae*, *M. psychrotolerans*, *M. tundripaludum*, *M. vadi*, *T. nivea*, *T. thiocyanatoxydans*. Amino acids are represented by single letter

abbreviations and distinct colors for each respective amino acid (T-COFFEE,

<https://www.ebi.ac.uk/Tools/msa/tcoffee/>).

Figure 28: T-COFFEE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10760 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *C. burnetii*, *G. bacterium*, *T. nivea*, *T. thiocyanatoxydans*, *M. vadi*, *M. lenta*, *M. methanica*, *M. luteus*, *M. oryzae*, *M. tundripaludum*, *M. psychrotolerans*. The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (T-COFFEE,

<https://www.ebi.ac.uk/Tools/msa/tcoffee/>).

Figure 29: T-COFFEE multiple sequence alignment real phylogenetic tree for *Coxiella burnetii* gene BMW92_RS10760 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *C. burnetii*, *G. bacterium*, *T. nivea*, *T. thiocyanatoxydans*, *M. vadi*, *M. lenta*, *M. methanica*, *M. luteus*, *M. oryzae*, *M. tundripaludum*, *M. psychrotolerans*. The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (T-COFFEE,

<https://www.ebi.ac.uk/Tools/msa/tcoffee/>).

T-COFFEE Sequence Logo

Figure 30: Sequence logo generated from the T-COFFEE multiple sequence alignments of *Coxiella burnetii* gene BMW92_RS10760 and the top 10 organism sequences similarities selected. Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid. The conservation of each amino acid among residue across similar sequences is represented by the height of each single letter abbreviation of the amino acid (WebLogo, <https://weblogo.berkeley.edu/logo.cgi>).

Protein Localization

SIGNALP

SignalP-5.0 prediction (Gram-negative): Sequence

Figure 31: SignalP 5.0 prediction (Gram-negative) for gene BMW92_RS10760 of *Coxiella burnetii*. The SP (Sec/SPI), TAT (Tat/SPI), LIPO (Sec/SPII), and CS probability scores indicate that this protein is not a signal peptide. The program calculated an 89.32% chance that this protein has another protein classification that is not related to similar function and type as signal peptides (SignalP, <http://www.cbs.dtu.dk/services/SignalP/>).

LIPOP

```
# Sequence CYT score=-0.200913
# Cut-off=-3
Sequence LipoP1.0:Best CYT 1 1 -0.200913
# NO PLOT made - less than 4 putative cleavage sites predicted
```

Figure 32: LipoP 1.0 was unable to generate a plot graph due to there being less than four predicted putative cleavage sites. The best localization prediction resulted in the highest scoring class being the cytoplasmic protein class (LipoP, <http://www.cbs.dtu.dk/services/LipoP/>).

TMHMM

# WEBSEQUENCE Length: 268			
# WEBSEQUENCE Number of predict	ed TMHs:	0	
# WEBSEQUENCE Exp number of AAs	in TMHs:	0.11125	
<pre># WEBSEQUENCE Exp number, first</pre>	60 AAs:	0.05351	
<pre># WEBSEQUENCE Total prob of N-i</pre>	n:	0.10637	
WEBSEQUENCE TMHMM2.0	outside	1	268

Figure 33: TMHMM posterior probability displayed a line graph that predicts the localization of the protein coded from BMW92_RS10760 as entirely outside the membrane. The red line, representative of the protein being located in the transmembrane, was 0% probability. This is indicative of the protein not being located within the transmembrane. The blue line, representative of the protein being located inside the membrane, was at 0.10 (0.10% probability). This is indicative of the protein being localized inside of the membrane highly unlikely. The

magenta line, representative of the protein being located outside the membrane, was at 0.90 (90% probability). This is indicative of the protein being localized outside of the membrane as highly likely (TMHMM, http://www.cbs.dtu.dk/services/TMHMM/).

BOMP

The total number of valid proteins submitted is: 1 The total number of integral β-barrel outer membrane proteins predicted is: 0

Sequence name Category Best BLAST hit

Figure 34: The BOMP test result identified there are no integral beta-barrel outer membrane

proteins for gene BMW92_RS10760 (BOMP, <http://services.cbu.uib.no/tools/bomp>).

PSORTb

SeqID: C.burnetii	
Analysis Report:	
CMSVM-	Unknown
CytoSVM-	Unknown
ECSVM-	Unknown
ModHMM-	Unknown
Motif-	Unknown
OMPMotif-	Unknown
OMSVM-	Unknown
PPSVM-	Unknown
Profile-	Unknown
SCL-BLAST-	Unknown
SCL-BLASTe-	Unknown
Signal-	Unknown
Localization Scores:	
Cytoplasmic	2.00
CytoplasmicMembrar	ne 2.00
Periplasmic	2.00
OuterMembrane	2.00
Extracellular	2.00
Final Prediction:	
Unknown	

[No details] [No details] [No details] [No internal helices found] [No motifs found] [No motifs found] [No details] [No details] [No matches to profiles found] [No matches against database] [No matches against database] [No signal peptide detected]

Figure 35: The PSORTb test resulted in an analysis report that identified no internal helices, motifs, or signal peptides. The PSORTb localization scores resulted in a 2.0 value for every location (cytoplasmic, cytoplasmic membrane, periplasmic, outer membrane). The calculated localization scores for gene BMW92_RS10760 resulted in the predictable location of the protein to be unknown (PSORTb, <https://www.psort.org/psortb/ >).

ID UNNAMED FT 268 NON CYTOPLASMIC. TOPO_DOM 1 11 Phobius posterior probabilities for UNNAMED 1 0.8 Posterior label probability 0.6 0.4 0.2 50 100 150 200 250 transmembrane cytoplasmic non cytoplasmic signal peptide

Phobius

Figure 36: The Phobius posterior probability line graph generated for gene BMW92_RS10760 resulted in a calculated prediction that the whole sequence contains no membrane helices. The grey line, representative of the predicted transmembrane helices location, was less than 0.02 (0.02%) posterior probability. The green line, representative of the predicted cytoplasmic transmembrane helices location, was around 0.25 (25%) posterior probability. The blue line, representative of the predicted non-cytoplasmic transmembrane helices location, was around 0.75 (75%) posterior probability. The red line, representative of the presence or absence of a signal peptide, was 0.00 (0%) posterior probability (Phobius, http://phobius.sbc.su.se).

BMW92_RS10830

The second gene, BMW92 RS10830, was analyzed using bioinformatic technology. Table 2 below contains the provided data regarding basic information. A protein isoelectric point calculator was used to determine the isoelectric point of the protein, protein length, and the number and prevalence of each amino acid that makes up the protein (Figure 31). The BLASTp search tool produced 100 matches ranked from highest sequence similarity to lowest sequence similarity. The top ten sequences with significant alignments that were not identical species to Coxiella burnetii were selected. The information recorded included the organism name, protein name, percent identity, precent positive, length of alignment match, e-values, and percent gap. The highest ranked match to the BMW92 RS10830 gene was pyrroline-5-carboxylate reductase [Coxiella mudrowiae] (Figure 38). The remaining nine matches to the BMW92 RS10830 gene all had a function as pyrroline-5-carboxylate reductase (Figures 39-47) The CDD identified five potential protein domains hits conserved (Figure 48). Four of the domain hits conserved and identified by the CDD belong to the ProC superfamily, PRK11880 superfamily, P5CR dimer superfamily, or proC superfamily. Specific domain hits involved the PRK11880, ProC, and proC superfamilies. One domain hit conserved and identified as a non-specific domain hit was the NADP-binding-Glutamyl-tRNA-reductase, which is part of the NADB Rossman superfamily and further included in the ProC superfamily. The protein classification identified by the CDD was pyrroline-5-carboxylate reductase. Four of the domain hits sequences were aligned with the guery sequence based off the amino acids that are highly conserved between both sequences (Figures 50-53). The MUSCLE program generated a multiple sequence alignment (MSA); each amino acid in the sequence was assigned a distinct color to distinguish the amino acids being compared (Figure 54). The MUSCLE program generated two phylogenetic trees using the

multiple sequence alignments to further confirm sequence similarity. The results displayed the numbers followed behind each organism at the end of each leaf node which displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and Coxiella burnetii. The use of a phylogenetic cladogram (Figure 55) and real phylogenetic tree (Figure 56) provided further understanding of the relatedness of common ancestors and organism sequences that are conserved. Each of the letter's heights produced correspond to the conservation of the amino acid residue across similar sequences. WebLogo produced a sequence logo that was generated from the MUSCLE multiple sequence alignments of Coxiella burnetii gene BMW92 RS10830 and the top 10 organism sequences similarities selected (Figure 57). Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid. Each of the single letter amino acid abbreviation's heights correspond to the conservation of the amino acid residue across similar sequences. The T-COFEE program generated another multiple sequence alignment to further confirm sequence similarity depicted with in the MUSCLE MSA (Figure 58). The T-COFFEE program generated two phylogenetic trees, phylogenetic cladogram (Figure 59) and real phylogenetic tree (Figure 60), using the multiple sequence alignment which displayed the genetic proximity and similarity between Coxiella burnetii and selected organisms from the BLASTp search. WebLogo constructed a sequence logo from the T-COFFEE multiple sequence alignments of Coxiella burnetii gene BMW92 RS10830 and the top 10 organism sequences similarities selected to further display sequence similarity and conservation of sequences. Each of the single letter amino acid abbreviation's heights correspond to the conservation of the amino acid residue across similar sequences (Figure 61). Protein localization results included SignalP, LipoP, TMHMM, BOMP, PSORTb, and Phobius. The SignalP graphical illustration identified that there

70

is a small probability of a signal peptide present from amino acids 1-26 and no presence of a signal peptide for the remainder of the protein sequence (Figure 62). The LipoP resulted in the highest scoring class being the cytoplasmic protein class (Figure 63). The TMHMM test resulted in a graphical illustration, statistics, and a list of the predicted transmembrane helices and the predicted location of the intervening loop regions. The TMHMM test resulted and displayed that the whole sequence is highly unlikely to contain any transmembrane helices and that the majority of the protein has a high probability of being located outside of the membrane (Figure 64). The BOMP test result identified there are no integral beta-barrel outer membrane proteins (Figure 65). The PSORTb test resulted in an analysis report that identified no detectable internal helices, motifs, or signal peptides; the localization scores calculated the predictable location of the protein to be cytoplasmic (Figure 66). The Phobius test resulted in a line graphical illustration that identified a low probability of transmembrane helices present; the overall result calculated by Phobius resulted in the entire protein sequence as non-cytoplasmic (Figure 67).

Basic Information

Genome	Replicon	Locus Tag	Old Locus Tag
Coxiella burnetii	NZ_CP018005	BMW92_RS10830	BMW92_10460
Genomic	Products	Length	Start and End
Coordinates			Position
19640911964915	pyrroline-5-	825 / 274	1964091 - 1964915
	carboxylate reductase		
Molecular	Average	IPC Protein	Protein Length
Weight	Isoelectric Point		
29422.01664 Da	6.217	6.04	273 amino acids
Nucleotid	e Sequence	Amino A	cid Sequence
atgaatacttccaatattactttt cgcaatatcgtggtaggattaa ccgtatttgtgttactaatcgaa ggaaaagtgtggagtccataa gctttgaacgctgatgtggttg ttaaaatggtttgcgaggaatt aaattettgtaatttecttagcag tgaaaaatggttaggcaagga caatacacetteetcggtaaga aaacgagactgtggataaag gattatgcgtgcggtgggtt ccaaattgaaaaaatagetge atatttttttaattatggaggaacag gttttgggcgcggetcgtatgg agtacaattgcgtcaagtagg gttttagggcgcggtcgattgg agtacaaggatcaagtattgg ttaaagcgatcaagtattgg ttaaagcgatcaagtattgg ttaaagcgatcaagtattgg ttaaagcgtagaccaatga	atcggcggcgggaatatggcg attgccaacggctacgaccctaa agtttagataaattagatttetttaa etactcaagataategtcaagga tgttagccgttaaaccteateaaa aaaagatatttaagcgaaacga gtaggcgttaccacaccgeteat etteacgtattgtgcgtgetatgcc agccggtgetacaggtttatttgc accaaaaaaatetagcggaate ggtcatttgggtttcgtetgagga actttegggetcgggecetgett etteaggaggcgcaaaagtgt aggcattgettacggaacaaagtgt aggcactggaaaccttegtgaatta cggtaateggaaaccttegtgaatta cggtaateggaaacttegtgaatta	MNTSNITFIGGGNN NRICVTNRSLDKLI RQGALNADVVVLA DILSETKILVISLAV RIVRAMPNTPSSVF QKNLAESIMRAVG LSGSGPAYIFLIME. AELLTEQTVLGAR VTSPGGTTEQAIKV AVNRAKELSKTVD	ARNIVVGLIANGYDP DFFKEKCGVHTTQDN AVKPHQIKMVCEELK GVTTPLIEKWLGKAS AGATGLFANETVKD LVIWVSSEDQIEKIAA ALQEAAEQLGLTKET MALETEQSVVQLRQF /LESGNLRELFIKALTA Q

 Table 2: Gene BMW92_RS10830 basic information

Figure 37: Protein isoelectric point calculator. The number and prevalence of each amino acid in the protein coded from the BMW92_RS10830 gene of *Coxiella burnetii* (Kozlowski, Biology Direct, http://isoelectric.org/).

Sequence Similarity

BLAST

pyrroline-5-carboxylate reductase [Candidatus Coxiella mudrowiae] Sequence ID: <u>WP_100623471.1</u> Length: 276 Number of Matches: 1									
Range 1	: 1 to	269 GenPept Graphics	Vext Match	Previous M					
Score 391 bits	s(1005	ExpectMethodIdentitiesPositives) 8e-135Compositional matrix adjust.191/269(71%)224/269(Gaps 83%) 0/269(0%	6)					
Query	1	MNTSNITFIGGGNMARNIVVGLIANGYDPNRICVTNRSLDKLDFFKEKC M +NITFIGGGNMA NIVVGL+ANGYD NRICVTN + DKL FF+EKC	GVHTTQDNRQG V TTO+NR+G	60					
Sbjct	1	MRIANITFIGGGNMACNIVVGLLANGYDSNRICVTNPTSDKLTFFREKC	KVRTTQNNREG	60					
Query	61	ALNADVVVLAVKPHQIKMVCEELKDILSETKILVISLAVGVTTPLIEKW A NAD ++LAVKP+O+K VCEELKDI++ L+IS+AVGV L++KW	LGKASRIVRAM	120					
Sbjct	61	ATNADAIILAVKPNQVKGVCEELKDIVNTLHPLIISVAVGVRVKLLQKW	LQSEPAIVRAM	120					
Query	121	PNTPSSVRAGATGLFANETVDKDQKNLAESIMRAVGLVIWVSSEDQIEK PNTP+SV AGAT LFANE K+Q+NLAESI+RAVGLV+W+S EDQI++	IAALSGSGPAY +AALSGSGPAY	180					
Sbjct	121	PNTPASVGAGATALFANEKATKEQRNLAESILRAVGLVVWLSLEDQIDE	VAALSGSGPAY	180					
Query	181	IFLIMEALQEAAEQLGLTKETAELLTEQTVLGAARMALETEQSVVQLRQ IF +MEALOEA E LGL KET +LLT OTV GAARM+LE E+ +V+LR+	FVTSPGGTTEQ	240					
Sbjct	181	IFFVMEALQEAGEGLGLPKETVQLLTAQTVWGAARMSLEAEEDLVELRR	FVTSPGGTTEQ	240					
Query	241	AIKVLESGNLRELFIKALTAAVNRAKELS 269 AIKVL+SGNL ELF L AAV RAKELS							
Sbjct	241	AIKVLKSGNLPELFTNVLKAAVQRAKELS 269							

Figure 38: BLAST first match for BMW92_RS10830 sequence from organism Coxiella

mudrowiae with an e-value of 8e-135, 71% identity, 83% positives, 0% gaps (dissimilarity), and an

pyrroline-5-carboxylate reductase [Thioalbus denitrificans]

Sequence ID: WP_114279927.1 Length: 277 Number of Matches: 1

See 1 more title(s) See all Identical Proteins(IPG)

Range 1: 1 to 269 GenPept Graphics

Vext Match A Previous

Score		Expect Method	Idoptition	Decitives	Cane	,
Score	()		Identities	POSILIVES	Gaps	
286 bits	s(732)	3e-93 Compositional matrix adjust.	141/269(52%)	191/269(71%)	0/269(0%)	_
Query	1	MNTSNITFIGGGNMARNIVVGLIANGY	DPNRICVTNRSLI	OKLDFFKEKCGVH	ITTQDNRQG	60
Sbjct	1	MEQGIISFIGGGNMCSSLVGGLIADGY	APERIRVSDPGEI	ETLASLRARFGVH	ITTHDNREA	60
Query	61	ALNADVVVLAVKPHQIKMVCEELKDIL	SETKILVISLAV	GVTTPLIEKWLGK	ASRIVRAM	120
Sbjct	61	A A VVVLAVKP + V EL ++ AAGAGVVVLAVKPQVLPKVAAELAPVV	QEHGTLVVSIAA	GIRTTDLQRWLGA	GVALVRTM	120
Query	121	PNTPSSVRAGATGLFANETVDKDQKNL	AESIMRAVGLVI	WVSSEDQIEKIAA	LSGSGPAY	180
Sbjct	121	PNTP+ V++GAT LFA V Q++ PNTPALVKSGATALFATAAVTAAQRDQ	AES++RAVGL +V AESVLRAVGLTLV	VLENEEQMDAVTA	LSGSGPAY	180
Query	181	IFLIMEALQEAAEQLGLTKETAELLTE	QTVLGAARMALE	TEQSVVQLRQFV1	SPGGTTEQ	240
Sbjct	181	FILMEATO AAT TGL T IA LLI FFLVMEAMQGAAQAIGLPERTARLLTL	QTAFGAAKMALE	SDEEPSLLRQRVI	SPGGITER	240
Query	241	AIKVLESGNLRELFIKALTAAVNRAKE	LS 269			
Sbjct	241	AT VLE G LRELF ALTTA TRTEE ALNVLEEGKLRELFRDALTSARDRSRE	LA 269			

Figure 39: BLAST second match for BMW92 RS10830 sequence from organism Thioalbus

denitrificans with an e-value of 3e-93, 52% identity, 71% positives, 0% gaps (dissimilarity), and an

pyrroline-5-carboxylate reductase [Nitrosococcus halophilus]

Sequence ID: <u>WP_013034658.1</u> Length: 277 Number of Matches: 1

See 1 more title(s) See all Identical Proteins(IPG)

Range 1: 1 to 270 GenPept Graphics

Vext Match 🔺 Previous

Score		Expect Method	Identities	Positives	Gaps	
281 bits	(720)	2e-91 Compositional matrix adjust.	138/270(51%)	190/270(70%)	0/270(0%)	
Query	1	MNTSNITFIGGGNMARNIVVGLIANGY MN + FIGGGNMA +++ GLIA+G	DPNRICVTNRSLI + I V +) KLDFFKEKCGVH KLD + V+	TTQDNRQG TT DN Q	60
Sbjct	1	MNEKTLAFIGGGNMATSLIGGLIADGR	NAQTIWVADPDR	SKLDALHHRFSVN	TTPDNLQA	60
Query	61	ALNADVVVLAVKPHQIKMVCEELKDIL A A+VVVLAVKP O++ V LK ++	SETKILVISLAVO	GVTTPLIEKWLGK	ASRIVRAM + TVRAM	120
Sbjct	61	AQEAEVVVLAVKPQQLRTVATGLKSVV	TSSQPLWLTIAAC	GIRIPDLERWLGG	PAPIVRAM	120
Query	121	PNTPSSVRAGATGLFANETVDKDQKNL PNTP+ V+AGAT LFAN + O+ +	AESIMRAVGLVIV AES++RAVGL +V	VVSSEDQIEKIAA V+ E+ +E + A	LSGSGPAY	180
Sbjct	121	PNTPALVQAGATALFANAQTNPQQRQM	AESVLRAVGLTL	LKDENLMEVVTA	LSGSGPAY	180
Query	181	IFLIMEALQEAAEQLGLTKETAELLTE FL+MEA+++AA LGL TA LLT	QTVLGAARMALET +T GAA+MALET	TEQSVVQLRQFVT -E+ ++LRO VT	SPGGTTEQ	240
Sbjct	181	FFLVMEAMEKAAIDLGLDDSTARLLTL	ETAFGAAKMALES	SEEDSIRLRQRVT	SPGGTTER	240
Query	241	AIKVLESGNLRELFIKALTAAVNRAKE AI LE N+RE F AL AA +R +E	LSK 270 L++			
Sbjct	241	AITALEEANIREAFAHALRAARDRTRE	LAE 270			

Figure 40: BLAST third match for BMW92_RS10830 sequence from organism Nitrosococcus

halophilus with an e-value of 2e-91, 51% identity, 70% positives, 0% gaps (dissimilarity), and an

pyrroline-5-carboxylate reductase [Alkalilimnicola ehrlichii]

Sequence ID: WP_011628091.1 Length: 275 Number of Matches: 1

<u>See 1 more title(s)</u> <u>See all Identical Proteins(IPG)</u>

Range 1: 1 to 270 GenPept Graphics

Vext Match 🔺 Previous

Score		Expect Method	Identities	Positives	Gaps	
281 bits	(720)	2e-91 Compositional matrix adjust.	137/270(51%)	186/270(68%)	0/270(0%)	
Query Sbjct	1 1	MNTSNITFIGGGNMARNIVVGLIANGY M+ + + FIGGGNMAR+++ GL+A+G+ MSNNTLCFIGGGNMARSLIGGLLADGF	DPNRICVTNRSLI DP + V + DPQAVRVADPDAC	OKLDFFKEKCGVH K D + GV GKRDDLANRFGVR	TTQDNRQG DN + VYADNLEA	60 60
Query	61	ALNADVVVLAVKPHQIKMVCEELKDIL A +AD V+LAVKP ++ CE+L	SETKILVISLAVO + L IS+A (GVTTPLIEKWLGK GV P + +WLG	ASRIVRAM + +VR M	120
Sbjct	61	AADADTVILAVKPQVVRTACEQLVAGS	GDAGRLFISIAAC	GVREPDLTRWLGG	QAAVVRTM	120
Query	121	PNTPSSVRAGATGLFANETVDKDQKNL PNTPS V GAT L+AN+ V + Q+ L	AESIMRAVGLVIV AES+MRAVGLV+V	VVSSEDQIEKIAA V+ E Q++ + A	LSGSGPAY +SGSGPAY	180
Sbjct	121	PNTPSLVGTGATALYANDRVKERQREL	AESLMRAVGLVVV	VLDDEAQMDTVTA	VSGSGPAY	180
Query	181	IFLIMEALQEAAEQLGLTKETAELLTE FL+MEA+++AA LGL ETA LLT	QTVLGAARMALET +T LGAA+MALET	TEQSVVQLRQFVT +++S OLRO VT	SPGGTTEQ	240
Sbjct	181	FFLLMEAIEDAARDLGLPGETARLLTI	ETALGAAKMALES	SDESPAQLRQRVT	SPGGTTEH	240
Query	241	AIKVLESGNLRELFIKALTAAVNRAKE A+ VLE G R L +A+ AA RA+E	LSK 270 L +			
Sbjct	241	ALHVLEDGEYRALMTRAVQAAAKRAQE	LGQ 270			

Figure 41: BLAST fourth match for BMW92_RS10830 sequence from organism Alkalilimnicola

ehrlichii with an e-value of 2e-91, 51% identity, 68% positives, 0% gaps (dissimilarity), and an

pyrroline-5-carboxylate reductase [Alkalispirillum mobile]

Sequence ID: WP_121441822.1 Length: 275 Number of Matches: 1

<u>See 1 more title(s)</u> See all Identical Proteins(IPG)

Range 1: 1 to 274 GenPept Graphics

Vext Match 🔺 Previous Ma

ScoreExpect MethodIdentitiesPositivesGaps277 bits(709)7e-90Compositional matrix adjust.137/274(50%)185/274(67%)0/274(0%)Query1MNTSNITFIGGGNMARNIVVGLIANGYDPNRICVTNRSLDKLDFFKEKCGVHTQDNRQG M + FIGGGNMAR+++ GL+ +GYDP I V K + + GV +DN +Sbjct1MTMKTLCFIGGGNMARSLIGGLLTDGYDPQAIRVAEPDAGKREDLANRFGVRVHEDNLEAQuery61ALNADVVVLAVKPHQIKMVCEELKDILSETKILVISLAVGVTTPLIEKWLGKASRIVRAM A NA V+LAVKP I+ VCE+L + + IS+A GV P + +WLG ++ +VR MSbjct61AANAQAVILAVKPQVIRPVCEQLAGAEAGKGRVYISIAAGVREPDLTRWLGGSAAVVRTMQuery121PNTPSSVRAGATGLFANETVDKDQKNLAESIMRAVGLVIWVSSEDQIEKIAALSGSGPAY PNTPS V GAT L+AN V + Q+ LAES+MRAVGLV+W+ E Q++ + A+SGSGPAY SbjctSbjct121PNTPSLVGTGATALYANPQVSEPQRELAESLMRAVGLVVWLDDETQMDTVTAVSGSGPAY Query181IFLIMEALQEAAEQLGLTKETAELLTEQTVLGAARMALETEQSVVQLRQFVTSPGGTTEQ FL+MEA++EAA + GL ETA LLT +T LGAA+MALE++S QLRQ VTSPGGTTE SbjctSbjct181FFLLMEAIEEAAREQGLPAETARLLTIETALGAAKMALESDESPGQLRQRVTSPGGTTEHQuery241AIKVLESGNLRELFIKALTAAVNRAKELSKTVDQ 274 A+ +LE G R L +A+ AA RA+EL + + +Sbjct241ALHLLEDGEYRTLMARAVKAAAQRARELGQMLGE 274								
277 bits(709)7e-90Compositional matrix adjust.137/274(50%)185/274(67%)0/274(0%)Query1MNTSNITFIGGGNMARNIVVGLIANGYDPNRICVTNRSLDKLDFFKEKCGVHTQDNRQG M + FIGGGNMAR+++ GL+ +GYDP I V K + + GV +DN +Sbjct1MTMKTLCFIGGGNMARSLIGGLLTDGYDPQAIRVAEPDAGKREDLANRFGVRVHEDNLEAQuery61ALNADVVVLAVKPHQIKMVCEELKDILSETKILVISLAVGVTTPLIEKWLGKASRIVRAM A NA V+LAVKP I+ VCE+L + + IS+A GV P + +WLG ++ +VR MSbjct61AANAQAVILAVKPQVIRPVCEQLAGAEAGKGRVYISIAAGVREPDLTRWLGGSAAVVRTMQuery121PNTPSSVRAGATGLFANETVDKDQKNLAESIMRAVGLVIWVSSEDQIEKIAALSGSGPAY PNTPS V GAT L+AN V + Q+ LAES+MRAVGLV+W+ E Q++ + A+SGSGPAYSbjct121PNTPSLVGTGATALYANPQVSEPQRELAESLMRAVGLVVWLDDETQMDTVTAVSGSGPAY Query181IFLIMEALQEAAEQLGLTKETAELLTEQTVLGAARMALETEQSVVQLRQFVTSPGGTTEQ FL+MEA+EAA + GL ETA LLT +T LGAA+MALE+++S QLRQ VTSPGGTTE Sbjct241AIKVLESGNLRELFIKALTAAVNRAKELSKTVDQ274 A+ +LE G R L +A+ AA RA+EL + + +Sbjct241ALHLLEDGEYRTLMARAVKAAAQRARELGQMLGE274	Score		Expect	Method		Identities	Positives	Gaps
Query1MNTSNITFIGGGNMARNIVVGLIANGYDPNRICVTNRSLDKLDFFKEKCGVHTTQDNRQG M + FIGGGNMAR+++ GL+ +GYDP I V K + + GV +DN +Sbjct1MTMKTLCFIGGGNMARSLIGGLLTDGYDPQAIRVAEPDAGKREDLANRFGVRVHEDNLEAQuery61ALNADVVVLAVKPHQIKMVCEELKDILSETKILVISLAVGVTTPLIEKWLGKASRIVRAM A NA V+LAVKP I+ VCE+L + + IS+A GV P + +WLG ++ +VR MSbjct61AANAQAVILAVKPQVIRPVCEQLAGAEAGKGRVYISIAAGVREPDLTRWLGGSAAVVRTMQuery121PNTPSSVRAGATGLFANETVDKDQKNLAESIMRAVGLVIWVSSEDQIEKIAALSGSGPAY PNTPS V GAT L+AN V + Q+ LAES+MRAVGLV+W+ E Q++ + A+SGSGPAY SbjctQuery181IFLIMEALQEAAEQLGLTKETAELLTEQTVLGAARMALETEQSVVQLRQFVTSPGGTTEQ FL+MEA++EAA + GL ETA LLT +T LGAA+MALE+++S QLRQ VTSPGGTTE SbjctQuery241AIKVLESGNLRELFIKALTAAVNRAKELSKTVDQ 274 A+ +LE G R L +A+ AA RA+EL + + +Sbjct241ALHLLEDGEYRTLMARAVKAAAQRARELGQMLGE 274	277 bits	s(709)	7e-90	Compositional	matrix adjust.	137/274(50%)	185/274(67%)	0/274(0%)
Sbjct1MTMKTLCFIGGGNMARSLIGGLLTDGYDPQAIRVAEPDAGKREDLANRFGVRVHEDNLEAQuery61ALNADVVVLAVKPHQIKMVCEELKDILSETKILVISLAVGVTTPLIEKWLGKASRIVRAM A NA V+LAVKP I+ VCE+L + + IS+A GV P + +WLG ++ +VR MSbjct61AANAQAVILAVKPQVIRPVCEQLAGAEAGKGRVYISIAAGVREPDLTRWLGGSAAVVRTMQuery121PNTPSSVRAGATGLFANETVDKDQKNLAESIMRAVGLVIWVSSEDQIEKIAALSGSGPAY PNTPS V GAT L+AN V + Q+ LAES+MRAVGLV+W+ E Q++ + A+SGSGPAYSbjct121PNTPSLVGTGATALYANPQVSEPQRELAESLMRAVGLVVWLDDETQMDTVTAVSGSGPAYQuery181IFLIMEALQEAAEQLGLTKETAELLTEQTVLGAARMALETEQSVVQLRQFVTSPGGTTEQ FL+MEA++EAA + GL ETA LLT +T LGAA+MALE+++S QLRQ VTSPGGTTESbjct181FFLLMEAIEEAAREQGLPAETARLLTIETALGAAKMALESDESPGQLRQRVTSPGGTTEHQuery241AIKVLESGNLRELFIKALTAAVNRAKELSKTVDQ 274 A+ +LE G R L +A+ AA RA+EL + + +Sbjct241ALHLLEDGEYRTLMARAVKAAAQRARELGQMLGE 274	Query	1	MNTSI M	NITFIGGGNMAR + FIGGGNMAR	NIVVGLIANGY	DPNRICVTNRSL DP I V	DKLDFFKEKCGVH K + + GV	ITTQDNRQG +DN +
Query61ALNADVVVLAVKPHQIKMVCEELKDILSETKILVISLAVGVTTPLIEKWLGKASRIVRAM A NA V+LAVKP I+ VCE+L + + IS+A GV P + +WLG ++ +VR M AANAQAVILAVKPQVIRPVCEQLAGAEAGKGRVYISIAAGVREPDLTRWLGGSAAVVRTMQuery121PNTPSSVRAGATGLFANETVDKDQKNLAESIMRAVGLVIWVSSEDQIEKIAALSGSGPAY PNTPS V GAT L+AN V + Q+ LAES+MRAVGLV+W+ E Q++ + A+SGSGPAY Sbjct 121Query181IFLIMEALQEAAEQLGLTKETAELLTEQTVLGAARMALETEQSVVQLRQFVTSPGGTTEQ FL+MEA++EAA + GL ETA LLT +T LGAA+MALE+++S QLRQ VTSPGGTTE Sbjct 181Sbjct181IFFLLMEAIEEAAREQGLPAETARLLTIETALGAAKMALESDESPGQLRQRVTSPGGTTEHQuery241AIKVLESGNLRELFIKALTAAVNRAKELSKTVDQ 274 A+ +LE G R L +A+ AA RA+EL + + +Sbjct241ALHLLEDGEYRTLMARAVKAAAQRARELGQMLGE 274	Sbjct	1	MTMK	LCFIGGGNMAR	SLIGGLLTDGY	DPQAIRVAEPDA	GKREDLANRFGVR	VHEDNLEA
Sbjct61AANAQAVILAVKPQVIRPVCEQLAGAEAGKGRVYISIAAGVREPDLTRWLGGSAAVVRTMQuery121PNTPSSVRAGATGLFANETVDKDQKNLAESIMRAVGLVIWVSSEDQIEKIAALSGSGPAY PNTPS V GAT L+AN V + Q+ LAES+MRAVGLV+W+ E Q++ + A+SGSGPAYSbjct121PNTPSLVGTGATALYANPQVSEPQRELAESLMRAVGLVVWLDDETQMDTVTAVSGSGPAYQuery181IFLIMEALQEAAEQLGLTKETAELLTEQTVLGAARMALETEQSVVQLRQFVTSPGGTTEQ FL+MEA++EAA + GL ETA LLT +T LGAA+MALE+++S QLRQ VTSPGGTTESbjct181FFLLMEAIEEAAREQGLPAETARLLTIETALGAAKMALESDESPGQLRQRVTSPGGTTEHQuery241AIKVLESGNLRELFIKALTAAVNRAKELSKTVDQ 274 A+ +LE G R L +A+ AA RA+EL + + +Sbjct241ALHLLEDGEYRTLMARAVKAAAQRARELGQMLGE 274	Query	61	ALNAI A NA	OVVVLAVKPHQI	KMVCEELKDIL	SETKILVISLAV + + TS+A	GVTTPLIEKWLGK GV P + +WLG	ASRIVRAM
Query121PNTPSSVRAGATGLFANETVDKDQKNLAESIMRAVGLVIWVSSEDQIEKIAALSGSGPAY PNTPS V GAT L+AN V + Q+ LAES+MRAVGLV+W+ E Q++ + A+SGSGPAY SbjctSbjct121PNTPSLVGTGATALYANPQVSEPQRELAESLMRAVGLVVWLDDETQMDTVTAVSGSGPAYQuery181IFLIMEALQEAAEQLGLTKETAELLTEQTVLGAARMALETEQSVVQLRQFVTSPGGTTEQ FL+MEA++EAA + GL ETA LLT +T LGAA+MALE+++S QLRQ VTSPGGTTE SbjctSbjct181FFLLMEAIEEAAREQGLPAETARLLTIETALGAAKMALESDESPGQLRQRVTSPGGTTEHQuery241AIKVLESGNLRELFIKALTAAVNRAKELSKTVDQ 274 A+ +LE G R L +A+ AA RA+EL + + +Sbjct241ALHLLEDGEYRTLMARAVKAAAQRARELGQMLGE 274	Sbjct	61	AANAÇ	QAVILAVKPQVI	RPVCEQLAGAE	AGKGRVYISIAA	GVREPDLTRWLGG	SAAVVRTM
Sbjct121PNTPSLVGTGATALYANPQVSEPQRELAESLMRAVGLVVWLDDETQMDTVTAVSGSGPAYQuery181IFLIMEALQEAAEQLGLTKETAELLTEQTVLGAARMALETEQSVVQLRQFVTSPGGTTEQ FL+MEA++EAA + GL ETA LLT +T LGAA+MALE+++S QLRQ VTSPGGTTESbjct181FFLLMEAIEEAAREQGLPAETARLLTIETALGAAKMALESDESPGQLRQRVTSPGGTTEHQuery241AIKVLESGNLRELFIKALTAAVNRAKELSKTVDQ 274 A+ +LE G R L +A+ AA RA+EL + + +Sbjct241ALHLLEDGEYRTLMARAVKAAAQRARELGQMLGE 274	Query	121	PNTPS PNTPS	SSVRAGATGLFA	NETVDKDQKNL	AESIMRAVGLVI AES+MRAVGLV+	WVSSEDQIEKIAA W+ E O++ + A	LSGSGPAY
Query181IFLIMEALQEAAEQLGLTKETAELLTEQTVLGAARMALETEQSVVQLRQFVTSPGGTTEQ FL+MEA++EAA + GL ETA LLT +T LGAA+MALE+++S QLRQ VTSPGGTTESbjct181FFLLMEAIEEAAREQGLPAETARLLTIETALGAAKMALESDESPGQLRQRVTSPGGTTEHQuery241AIKVLESGNLRELFIKALTAAVNRAKELSKTVDQ 274 A+ +LE G R L +A+ AA RA+EL + + +Sbjct241ALHLLEDGEYRTLMARAVKAAAQRARELGQMLGE 274	Sbjct	121	PNTPS	SLVGTGATALYA	NPQVSEPQREL	AESLMRAVGLVV	WLDDETQMDTVTA	VSGSGPAY
Sbjct181FFLLMEAIEEAAREQGLPAETARLLTIETALGAAKMALESDESPGQLRQRVTSPGGTTEHQuery241AIKVLESGNLRELFIKALTAAVNRAKELSKTVDQ274A+ +LE GR+ +A+AARA+EL + + +Sbjct241ALHLLEDGEYRTLMARAVKAAAQRARELGQMLGE274	Query	181	IFLIN FL+N	1EALQEAAEQLG 1EA++EAA + G	LTKETAELLTE I. ETA LLT	QTVLGAARMALE +T LGAA+MALE	TEQSVVQLRQFVT +++S OLRO VT	SPGGTTEQ
Query 241 AIKVLESGNLRELFIKALTAAVNRAKELSKTVDQ 274 A+ +LE G R L +A+ AA RA+EL + + + Sbjct 241 ALHLLEDGEYRTLMARAVKAAAQRARELGQMLGE 274	Sbjct	181	FFLLN	1EAIEEAAREQG	LPAETARLLTI	ETALGAAKMALE	SDESPGQLRQRVI	SPGGTTEH
Sbjct 241 ALHLLEDGEYRTLMARAVKAAAQRARELGQMLGE 274	Query	241	AIKVI A+ +I	LESGNLRELFIK LE G R L +	ALTAAVNRAKE	LSKTVDQ 274 L + + +		
	Sbjct	241	ALHLI	LEDGEYRTLMAR	AVKAAAQRARE	LGQMLGE 274		

Figure 42: BLAST fifth match for BMW92 RS10830 sequence from organism Alkalispirillum

mobile with an e-value of 7e-90, 50% identity, 67% positives, 0% gaps (dissimilarity), and an

pyrroline-5-carboxylate reductase [Chromatiales bacterium]

Sequence ID: <u>HD072906.1</u> Length: 276 Number of Matches: 1

<u>See 1 more title(s)</u> See all Identical Proteins(IPG)

Range 1: 1 to 274 GenPept Graphics

Vext Match 🔺 Previous N

Score		Expect	Method		Identities	Positives	Gaps
277 bits	(709)	9e-90	Compositional	matrix adjust.	138/274(50%)	192/274(70%)	1/274(0%)
Query	1	MNTSI M N	NITFIGGGNMAR	NIVVGLIANGY	DPNRICVTNRSLI P R+CV +R	OKLDFFKEKCGVH + + + GV	ITTQDNRQG T++DN
Sbjct	1	MKDVN	IAFIGGGNMAT	SLIGGLLADHV	SPARLCVADRDP	AQREHLAAQFGVR	RTSEDNAAC
Query	61	ALNAI A +AI) VVVLAVKPHQI)V+VI.AVKP +	KMVCEELKDIL	SETKILVISLAV(+ LV+S+A (GVTTPLIEKWLGK GV T + +WLG	AS-RIVRA TVRA
Sbjct	61	AEDAI	OVIVLAVKPQVL	HEVCEALTDSV	QRKQPLVVSVAA	GVRTDSLRRWLGG	GDVAIVRA
Query	120	MPNTI MPNTI	SSVRAGATGLF	ANETVDKDQKNI A V ++O++1	LAESIMRAVGLV LAE+I+RA GL -	IWVSSEDQIEKIA +WV E O++ +	ALSGSGPA
Sbjct	121	MPNTE	PALLQSGATGLY	ACTGVSEEQRD	LAEAILRATGLT	LWVDDEAQMDIVI	ALSGSGPA
Query	180	YIFLI Y F H	IMEALQEAAEQI ME I.++AA +T	GLTKETAELLTI GL +TA LLT	EQTVLGAARMALI OT LGAARMALI	ETEQSVVQLRQFV E+ + V LR+ V	TSPGGTTE
Sbjct	181	YFFR	/MEGLEKAATEI	GLPAQTARLLT	LQTALGAARMALI	ESSEPVATLRKRV	TSPGGTTE
Query	240	QAIKV	/LESGNLRELFI +E+G++ I.	KALTAAVNRAKI	ELSKTVD 273		
Sbjct	241	Q GLK <i>I</i>	MEAGDIDALLG	KVLKAARDRSRI	ELAKLLD 274		

Figure 43: BLAST sixth match for BMW92 RS10830 sequence from organism Chromatiales

bacterium with an e-value of 9e-90, 50% identity, 70% positives, 0% gaps (dissimilarity), and an

pyrroline-5-carboxylate reductase [Nitrococcus mobilis]

Sequence ID: <u>WP_005003398.1</u> Length: 275 Number of Matches: 1

See 1 more title(s) See all Identical Proteins(IPG)

Range 1: 1 to 270 GenPept Graphics

Vext Match 🔺 Previous

Score		Expect Method	Identities	Positives	Gaps	
277 bits	(708)	9e-90 Compositional matrix adjust.	145/270(54%)	187/270(69%)	0/270(0%)	
Query	1	MNTSNITFIGGGNMARNIVVGLIANGY M +ITFIGGGNMA ++V GLIA+GY	DPNRICVTNRSLI R+ V +	KLDFFKEKCGVH K + +H	TTQDNRQG +DNR+	60
Sbjct	1	MAEESITFIGGGNMAYSLVGGLIADGY	RAERVHVADPDPA	KRMDLANRFRIH	VHEDNRKA	60
Query	61	ALNADVVVLAVKPHQIKMVCEELKDIL L A VVLAVKP IK V E L IL	SETKILVISLAVO E K LVIS+A O	VTTPLIEKWLGK V P I +WLG	ASRIVRAM +VR M	120
Sbjct	61	VLRAAAVVLAVKPQIIKSVLEPLGPIL	REQKSLVISIAAC	VREPDISRWLGG	QIAVVRTM	120
Query	121	PNTPSSVRAGATGLFANETVDKDQKNL PNTP+ VRAGAT L+ANE V ++O++L	AESIMRAVGLVIV AES++RAVG++ V	VSSEDQIEKIAA V+ E ++ + A	LSGSGPAY	180
Sbjct	121	PNTPALVRAGATALYANEYVSQNQRDL	AESLLRAVGIIQ	LDDETLLDIVTA	LSGSGPAY	180
Query	181	IFLIMEALQEAAEQLGLTKETAELLTE FL+ME L+ AA +LGL ++TA LLT	QTVLGAARMALEI +T LGAARMALEI	EQSVVQLRQFVT	SPGGTTEQ	240
Sbjct	181	FFLLMETLEAAAIELGLPEQTARLLTL	ETALGAARMALES	DEDPGRLRLRVT	SPGGTTEA	240
Query	241	AIKVLESGNLRELFIKALTAAVNRAKE A +VLESG ++LF +AL AA RA E	LSK 270 L +			
Sbjct	241	ATRVLESGGAQKLFQQALQAATTRAGE	LGR 270			

Figure 44: BLAST seventh match for BMW92_RS10830 sequence from organism Nitrococcus

mobilis with an e-value of 9e-90, 54% identity, 69% positives, 0% gaps (dissimilarity), and an

pyrroline-5-carboxylate reductase [Nitrosococcus watsonii]

Sequence ID: WP_013221840.1 Length: 277 Number of Matches: 1

See 1 more title(s) See all Identical Proteins(IPG)

Range 1: 1 to 270 GenPept Graphics

Vext Match A Previous I

Score		Expect Method Identiti	es Positives	Gaps
275 bits	(704)	5e-89 Compositional matrix adjust. 135/2	70(50%) 191/270(70%)	0/270(0%)
Query	1	MNTSNITFIGGGNMARNIVVGLIANGYDPNRIC M+ + FIGGGNMA +++ GL+A+G D I	VTNRSLDKLDFFKEKCGVH V + KLD E+ GV+	TTQDNRQG 60 T DN Q
Sbjct	1	MSEQTLAFIGGGNMAASLIGGLVADGRDAQAIW	<i>IVADPDRRKLDALHERFGVN</i>	TAPDNIQV 60
Query	61	ALNADVVVLAVKPHQIKMVCEELKDILSETKII A +A ++VLAVKP O++ V +LK++ + ++ I	.VISLAVGVTTPLIEKWLGK +++A G+ TP +E WLG	ASRIVRAM 120 + IVRAM
Sbjct	61	AQDAAIIVLAVKPQQLRSVVTQLKNVATLSQPI	WLTIAAGIGTPDVEAWLGG	PAPIVRAM 120
Query	121	PNTPSSVRAGATGLFANETVDKDQKNLAESIMF PNTP+ V+AGAT LFAN +O+ AES++F	AVGLVIWVSSEDQIEKIAA AVGL +W++ E+ +E + A	LSGSGPAY 180 LSG GPAY
Sbjct	121	PNTPALVQAGATALFANPHTSPNQRQTAESVLF	AVGLTLWLNDENLMEVVTA	LSGGGPAY 180
Query	181	IFLIMEALQEAAEQLGLTKETAELLTEQTVLGA FL+MEA+++AA LGL TA LLT +T GA	ARMALETEQSVVQLRQFVT	SPGGTTEQ 240
Sbjct	181	FFLVMEAMEKAAIDLGLESNTARLLTLETAFGA	AKMALKSEEGCASLRQRVT	SPGGTTER 240
Query	241	AIKVLESGNLRELFIKALTAAVNRAKELSK 2 AI LE N+R+ F +AL AA +RA+EL++	270	
Sbjct	241	AIAALEEANIRKAFARALQAARDRARELAQ 2	:70	

Figure 45: BLAST eighth match for BMW92_RS10830 sequence from organism Nitrosococcus

watsonii with an e-value of 5e-89, 50% identity, 70% positives, 0% gaps (dissimilarity), and an

pyrroline-5-carboxylate reductase [Halobacteria archaeon]

Sequence ID: NNJ93839.1 Length: 276 Number of Matches: 1

Range 1	: 1 to	270 GenPept Graphics		▼ [<u>Next Match</u>	Previous
Score 274 bits	(700)	Expect Method 2e-88 Compositional matrix adjust.	Identities 138/270(51%)	Positives 182/270(67%)	Gaps 0/270(0%)	
Query	1	MNTSNITFIGGGNMARNIVVGLIANGYD MN +++TFIGGGNMA ++V GLIA+G+D	PNRICVTNRSLD P RI V +	KLDFFKEKCGVH + + V	TTQDNRQG	60
Sbjct	1	MNDASLTFIGGGNMAASLVGGLIADGWD	PARIRVADPDAG	RRERMAARHQVS	TTPDNQAA	60
Query	61	ALNADVVVLAVKPHQIKMVCEELKDILS +ADVVVLAVKP + V +EL ++	ETKILVISLAVG + + LVIS+A G	VTTPLIEKWLGK	ASRIVRAM + IVR M	120
Sbjct	61	VSDADVVVLAVKPQVMAAVTQELAAGIA	QQQPLVISIAAG	IRESTLRDWLGA	DTAIVRTM	120
Query	121	PNTPSSVRAGATGLFANETVDKDQKNLA PNTP+ V++GAT L+AN V O++LA	ESIMRAVGLVIW	VSSEDQIEKIAA V E O++ + A	LSGSGPAY	180
Sbjct	121	PNTPALVQSGATALYANTAVSDGQRSLA	ESILRAVGLVIW	VEDEAQMDAVTA	LSGSGPAY	180
Query	181	IFLIMEALQEAAEQLGLTKETAELLTEQ	TVLGAARMALET	EQSVVQLRQFVI	SPGGTTEQ	240
Sbjct	181	FFFFMEALQAAGEELGLPAGTARLLALQ	TAFGAARMALES	SDDAATLRHHVI	SPGGITER	240
Query	241	AIKVLESGNLRELFIKALTAAVNRAKEL	SK 270			
Sbjct	241	AIGILQDGGLAKLISSAVRGAAERSREL	AE 270			

Range 1: 1 to 270 GenPept Graphics

Figure 46: BLAST ninth match for BMW92_RS10830 sequence from organism Halobacteria

archaeon with an e-value of 2e-88, 51% identity, 67% positives, 0% gaps (dissimilarity), and an

pyrroline-5-carboxylate reductase [Aquicella lusitana]

Sequence ID: <u>WP_114834951.1</u> Length: 275 Number of Matches: 1

<u>See 2 more title(s)</u> ✓ <u>See all Identical Proteins(IPG)</u>

Range 1: 1 to 269 GenPept Graphics

Vext Match A Previous

Score		Expect Method	Identities	Positives	Gaps	
272 bits	695)	9e-88 Compositional matrix adjust.	139/269(52%)	188/269(69%)	0/269(0%)	
Query	1	MNTSNITFIGGGNMARNIVVGLIANGY M+T I+ IG GNM +++ GLI +G+	DPNRICVTNRSLI	OKLDFFKEKCGVH	TTQDNRQG	60
Sbjct	1	MHTPVISIIGAGNMGSSLIGGLIKDGH	PSDKLWAADPSGI	EKLTQLKTKFDIN	TTSDNAQA	60
Query	61	ALNADVVVLAVKPHQIKMVCEELKDIL AD ++ AVKP V LK ++	SETKILVISLAVO	GVTTPLIEKWLGK	ASRIVRAM + TVRAM	120
Sbjct	61	IQAADTIIFAVKPQAFAHVALPLKKVI	AERKPLVISIAA	GIREASIQQWLNG	KTPIVRAM	120
Query	121	PNTPSSVRAGATGLFANETVDKDQKNL	AESIMRAVGLVI	VVSSEDQIEKIAA	LSGSGPAY	180
Sbjct	121	PNTPALIGCGATALYANPYVTESQRNL	AESILRAVGVVV	VLNDEKLMDTVTA	LSGSGPAY	180
Query	181	IFLIMEALQEAAEQLGLTKETAELLTE	QTVLGAARMALE	TEQSVVQLRQFVT	SPGGTTEQ	240
Sbjct	181	FLIMEALQEAAE LGL ETA LLT FFLMMEALQEAAEDLGLPTETARLLTL	QTALGAARMA+E- QTALGAARMAIE:	GTSLAELRRKVT	SPGGTTEK	240
Query	241	AIKVLESGNLRELFIKALTAAVNRAKE	LS 269			
Sbjct	241	AI VLE N+K LF +AL AA K++E AISVLEENNIRRLFKQALQAAKLRSEE	LA 269			

Figure 47: BLAST tenth match for BMW92_RS10830 sequence from organism Aquicella lusitana

with an e-value of 9e-88, 52% identity, 69% positives, 0% gaps (dissimilarity), and an identity of

Figure 48: BLAST graphic summary of the top 10 organism sequences similarities selected aligned with *Coxiella burnetii* query sequence of gene BMW92_RS10830. Each of the alignment sequences selected are order from highest sequence similarity (top) to lowest sequence similarity (bottom). All organism sequences aligned with the query sequence have an alignment score of greater than 200 (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

CDD

Figure 49: Conserved Domain Database output results for gene BMW92_RS10830. The top domain hit match was PRK11880: pyrroline-5-carboxylate reductase which aligned with the query sequence from amino acid residues 5-270 and had statistically significant e-value of 3.34e-117. The second domain hit match was ProC: Pyrroline-5-carboxylate reductase which aligned with the query sequence from amino acid residues 3-271 and had a statistically significant e-value of 8.09e-100. The third domain hit match was proC: pyrroline-5-carboxylate reductase which aligned with the query sequence from amino acid residues 3-271 and had a statistically significant e-value of 8.09e-100. The third domain hit match was proC: pyrroline-5-carboxylate reductase which aligned with the query sequence from amino acid residues 24-267 and had a statistically significant e-value of 7.34e-83. The fourth domain hit match was P5CR dimer: pyrroline-5-carboxylate reductase which aligned with the query sequence from amino acid residues 164-268 and had a statistically significant e-value of 1.85e-44. The last domain hit match was NAD_bind_Glutamyl_tRNA_reduct: NADP-binding domain of glutamyl-tRNA reductase which

aligned with the query sequence from amino acid residues 5-99 and had a statistically nonsignificant e-value of 5.13e-04 (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

Pssm-ID: 237008 [Multi-domain] Cd Length: 267 Bit Score: 336.73 E-value: 3.34e-117 20 10 30 40 50 60 70 80 ****** Query_23135 5 NITFIGGGNMARNIVVGLIANGYDPNRICVTNRSLDKLDFFKEKCGVHTTQDNRQGALNADVVVLAVKPHQIKMVCEELK 84 Cdd:PRK11880 4 KIGFIGGGNMASAIIGGLLASGVPAKDIIVSDPSPEKRAALAEEYGVRAATDNQEAAQEADVVVLAVKPQVMEEVLSELK 83 120
 90
 100
 110
 120
 130
 140
 150
 160

 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*....
 ...*...
 ...*...
 ...*...
 ...*....
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*....
 ...*....
 ...*....
 ...*....
 ...*.....
 ...*....
 ...*....
 ...*....
 ...*....
 ...*....
 ...*....
 ...*....
 ...*....
 ...*...
 ...*....
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*...
 ...*....
 ...*...
 ...*....
 Cdd:PRK11880 84 GQL---DKLVVSIAAGVTLARLERLLGADLPVVRAMPNTPALVGAGMTALTANALVSAEDRELVENLLSAFGKVVWVDDE 160 240 170 180 190 200 210 220 230 · · · · * · · · | · · · * · · · | · · · * · · · | · · · * · · · | · · · * · · · | · · · * · · · | · · · * · · · | · · · * · · · | Query_23135 165 DQIEKIAALSGSGPAYIFLIMEALQEAAEQLGLTKETAELLTEQTVLGAARMALETEQSVVQLRQFVTSPGGTTEQAIKV 244 Cdd:PRK11880 161 KQMDAVTAVSGSGPAYVFLFIEALADAGVKLGLPREQARKLAAQTVLGAAKLLLESGEHPAELRDNVTSPGGTTIAALRV 240 260 250 ***** Query 23135 245 LESGNLRELFIKALTAAVNRAKELSK 270 Cdd:PRK11880 241 LEEKGLRAAVIEAVQAAAKRSKELGK 266

Figure 50: The top domain hit sequence PRK11880: pyrroline-5-carboxylate reductase aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 5-270 and had statistically significant e-value of 3.34e-117 (BLAST,

<https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

			Pssm-ID: 223	3422 [Multi-o	domain] Cd L	ength: 266 B	it Score: 292	2.56 E-value:	8.09e-100	
Query 23135	3	10 *	20 *	30 *	40 .*	50 *	60 .*	70 .*	80 .*	1
Cdd:COG0345	1	MMKIGFIGAGNMGE	AILSGLLKSG	aLPPEEIIV	TNRSEEKRAA	LAAEYGVVTT	IDNQEAVEEA	DVVFLAVKPQ	DLEEVLS 8	0
		90 * I	100	110	120	130	140	150	160	
Ouery 23135	82	ELKDILSETkiLVI	SLAVGVTTPL	IEKWLGKAS	RIVRAMPNTP	SSVRAGATGLI	ANETVDKDO	KNLAESIMRA	VGLVIWV 1	61
Cdd:COG0345	81	KLKPLTKDKLVI	SIAAGVSIET	LERLLGGL-	RVVRVMPNTP	ALVGAGVTAI	SANANVSEED	KAFVEALLSA	VGKVVEV 1	57
		170	180	190	200	210	220	230	240	
		••••*•••••	*	* • • • • • • • • • • •	•*••••	.*	• * • • • • • • •	•*••••	.*	
Query_23135	162	SsEDQIEKIAALSG	SGPAYIFLIM	EALQEAAEQ	LGLTKETAEL	LTEQTVLGAA	RMALETEQSV	VQLRQFVTSP	GGTTEQA 2	41
Cdd:COG0345	158	E-ESLMDAVTALSG	SGPAYVFLFI	EALADAGVF	LGLPREEARE	LAAQTVAGAAI	KLLLESGEHP	AELRDQVTSP	GGTTIAG 2	36
		250	260	270 *						
Query_23135	242	IKVLESGNLRELFI	KALTAAVNRA	KELSKT 27	1					
Cdd:COG0345	237	LRVLEEDGFRGAVI	EAVEAAYKRS	EELGKQ 26	6					

Figure 51: The second domain hit sequence ProC: Pyrroline-5-carboxylate reductase aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 3-271 and had statistically significant e-value of 8.09e-100 (BLAST,

<https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

			Pssm-ID: 2729	11 [Multi-domain]	Cd Length: 245	Bit Score: 248.71	E-value: 7.34e-83	
Query_23135 Cdd:TIGR00112	24 4	10 * . ANGYDPNRICV AGALAPYDIYV	20 * INRSLDKLDFFKE INRSPEKLAALAK	30 * *. KCGVHTTQDNRQC ELGIVASSDAQE2	40 50 SALNADVVVLAVKI AVKEADVVFLAVKI) 60 * PHQIKMVCEELKDIL PQDLEEVLSELKSEK	70 80 * * SETKILVISLAVGVTT GKDK-LLISIAAGVTL	103 82
Query_23135 Cdd:TIGR00112	104 83	90 * . PLIEKWLGKASI EKLSQLLGGTR	100 * RIVRAMPNTPSSV RVVRVMPNTPAKV	110 * * RAGATGLFANETY GAGVTAIAANANY	120 130 * /DKDQKNLAESIMI /SEEDRALALALFI) 140 * RAVGLVIWVSsEDQI KAVGSVVELP-EALM	150 160 * * EKIAALSGSGPAYIFL DAVTALSGSGPAYVFL	183 161
Query_23135 Cdd:TIGR00112	184 162	170 * . IMEALQEAAEQ FIEALADAGVKO	180 * LGLTKETAELLTE QGLPRELALELAA	190 * * QTVLGAARMALE: QTVKGAAKLLEE:	200 210 * TEQSVVQLRQFVTS SGEHPALLKDQVTS) 220 * SPGGTTEQAIKVLES SPGGTTIAGLAVLEE	230 240 * * GNLRELFIKALTAAVN KGVRGAVIEAIEAAVR	263 241
Query_23135 Cdd:TIGR00112	264 242	RAKE 267 RSRE 245						

Figure 52: The third domain hit sequence proC: pyrroline-5-carboxylate reductase aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 24-267 and had statistically significant e-value of 7.34e-83 (BLAST, https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Figure 53: The fourth domain hit sequence P5CR dimer: pyrroline-5-carboxylate reductase aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 164-268 and had statistically significant e-value of 1.85e-44. (BLAST,

<https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

MUSCLE

C.burnetii	MNTSNITFIGGGNMARNIVVGLIANGYDPNRICVTNRSLDKLDFFKEKCGVHTTQDNRQG
C.mudrowiae	MRIANITFIGGGNMACNIVVGLLANGYDSNRICVTNPTSDKLTFFREKCKVRTTQNNREG
A.lusitana	MHTPVISIIGAGNMGSSLIGGLIKDGHPSDKLWAADPSGEKLTQLKTKFDINTTSDNAQA
N.mobilis	MAEESITFIGGGNMAYSLVGGLIADGYRAERVHVADPDPAKRMDLANRFRIHVHEDNRKA
A.ehrlichii	MSNNTLCFIGGGNMARSLIGGLLADGFDPQAVRVADPDAGKRDDLANRFGVRVYADNLEA
A.mobile	MTMKTLCFIGGGNMARSLIGGLLTDGYDPQAIRVAEPDAGKREDLANRFGVRVHEDNLEA
T.denitrificans	MEQGIISFIGGGNMCSSLVGGLIADGYAPERIRVSDPGEETLASLRARFGVHTTHDNREA
N.halophilus	MNEKTLAFIGGGNMATSLIGGLIADGRNAQTIWVADPDRSKLDALHHRFSVNTTPDNLQA
N.watsonii	MSEQTLAFIGGGNMAASLIGGLVADGRDAQAIWVADPDRRKLDALHERFGVNTAPDNIQV
C.bacterium	MKDVNIAFIGGGNMATSLIGGLLADHVSPARLCVADRDPAQREHLAAQFGVRTSEDNAAC
H.archaeon	MNDASLTFIGGGNMAASLVGGLIADGWDPARIRVADPDAGRRERMAARHQVSTTPDNQAA
	* ::**.*** .:: **:: . : .:: : . : . : *
C.burnetii	ALNADVVVLAVKPHQIKMVCEELKDILSETKILVISLAVGVTTPLIEKWLGKA-SRIVRA
C.mudrowiae	ATNADAIILAVKPNQVKGVCEELKDIVNTLHPLIISVAVGVRVKLLQKWLQSE-PAIVRA
A.lusitana	IQAADTIIFAVKPQAFAHVALPLKKVIAERKPLVISIAAGIREASIQQWLNGK-TPIVRA
N.mobilis	VLRAAAVVLAVKPQIIKSVLEPLGPILREQKSLVISIAAGVREPDISRWLGGQ-IAVVRT
A.ehrlichii	AADADTVILAVKPQVVRTACEQLVAGSGDAGRLFISIAAGVREPDLTRWLGGQ-AAVVRT
A.mobile	AANAQAVILAVKPQVIRPVCEQLAGAEAGKGRVYISIAAGVREPDLTRWLGGS-AAVVRT
T.denitrificans	AAGAGVVVLAVKPQVLPKVAAELAPVVQEHGTLVVSIAAGIRTTDLQRWLGAG-VALVRT
N.halophilus	AQEAEVVVLAVKPQQLRTVATGLKSVVTSSQPLWLTIAAGIRIPDLERWLGGP-APIVRA
N.watsonii	AQDAAIIVLAVKPQQLRSVVTQLKNVATLSQPLWLTIAAGIGTPDVEAWLGGP-APIVRA
C.bacterium	AEDADVIVLAVKPQVLHEVCEALTDSVQRKQPLVVSVAAGVRTDSLRRWLGGGDVAIVRA
H.archaeon	VSDADVVVLAVKPQVMAAVTQELAAGIAQQQPLVISIAAGIRESTLRDWLGAD-TAIVRT
	* :::***: * : :::*.*: : ** :**:
C.burnetii	MPNTPSSVRAGATGLFANETVDKDQKNLAESIMRAVGLVIWVSSEDQIEKIAALSGSGPA
C.mudrowiae	MPNTPASVGAGATALFANEKATKEQRNLAESILRAVGLVVWLSLEDQIDEVAALSGSGPA
A.lusitana	MPNTPALIGCGATALYANPYVTESQRNLAESILRAVGVVVWLNDEKLMDTVTALSGSGPA
N.mobilis	MPNTPALVRAGATALYANEYVSQNQRDLAESLLRAVGIIQWLDDETLLDIVTALSGSGPA
A.ehrlichii	MPNTPSLVGTGATALYANDRVKERQRELAESLMRAVGLVVWLDDEAQMDTVTAVSGSGPA
A.mobile	MPNTPSLVGTGATALYANPQVSEPQRELAESLMRAVGLVVWLDDETQMDTVTAVSGSGPA
T.denitrificans	MPNTPALVKSGATALFATAAVTAAQRDQAESVLRAVGLTLWLENEEQMDAVTALSGSGPA
N.halophilus	MPNTPALVQAGATALFANAQTNPQQRQMAESVLRAVGLTLWLKDENLMEVVTALSGSGPA
N.watsonii	MPNTPALVQAGATALFANPHTSPNQRQTAESVLRAVGLTLWLNDENLMEVVTALSGGGPA
C.bacterium	MPNTPALLQSGATGLYACTGVSEEQRDLAEAILRATGLTLWVDDEAQMDIVTALSGSGPA
H.archaeon	MPNTPALVQSGATALYANTAVSDGQRSLAESILRAVGLVIWVEDEAQMDAVTALSGSGPA
	*****: : ***.*:* . * **:::**.*: *:. * :: ::*:**.***
C.burnetii	YIFLIMEALQEAAEQLGLTKETAELLTEQTVLGAARMALETEQSVVQLRQFVTSPGGTTE
C.mudrowiae	YIFFVMEALQEAGEGLGLPKETVQLLTAQTVWGAARMSLEAEEDLVELRRFVTSPGGTTE
A.lusitana	YFFLMMEALQEAAEDLGLPTETARLLTLQTALGAARMAIESGTSLAELRRKVTSPGGTTE
N.mobilis	YFFLLMETLEAAAIELGLPEQTARLLTLETALGAARMALESDEDPGRLRLRVTSPGGTTE
A.ehrlichii	YFFLLMEAIEDAARDLGLPGETARLLTIETALGAAKMALESDESPAQLRQRVTSPGGTTE
A.mobile	YFFLLMEAIEEAAREQGLPAETARLLTIETALGAAKMALESDESPGQLRQRVTSPGGTTE
T.denitrificans	YFFLVMEAMQGAAQAIGLPERTARLLTLQTAFGAAKMALESDEEPSLLRQRVTSPGGTTE
N.halophilus	YFFLVMEAMEKAAIDLGLDDSTARLLTLETAFGAAKMALESEEDSIRLRQRVTSPGGTTE
N.watsonii	YFFLVMEAMEKAAIDLGLESNTARLLTLETAFGAAKMALKSEEGCASLRQRVTSPGGTTE
C.pacterium	YFFRVMEGLEKAATELGLPAQTARLLTLQTALGAARMALESSEPVATLRKRVTSPGGTTE
n.arcnaeon	IFFFFMEALQAAGEELGLPAGTAKLLALQTAFGAARMALESSDDAATLRHHVTSPGGTTE

C.burnetii	QAIKVLESGNLRELFIKALTAAVNRAKELSKTVDQ
C.mudrowiae	QAIKVLKSGNLPELFTNVLKAAVQRAKELSVELEKSI-
A.lusitana	KAISVLEENNIRRLFKQALQAAKLRSEELATLLGKE
N.mobilis	AATRVLESGGAQKLFQQALQAATTRAGELGRLLGEQ
A.ehrlichii	HALHVLEDGEYRALMTRAVQAAAKRAQELGQMLGEQ
A.mobile	HALHLLEDGEYRTLMARAVKAAAQRARELGQMLGEQ
T.denitrificans	RALNVLEEGKLRELFRDALTSARDRSRELAAILGRDPD
N.halophilus	RAITALEEANIREAFAHALRAARDRTRELAEELGTDHA
N.watsonii	RAIAALEEANIRKAFARALQAARDRARELAQELGSKHA
C.bacterium	QGLKAMEAGDIDALLGKVLKAARDRSRELAKLLDDT
H.archaeon	RAIGILQDGGLAKLISSAVRGAAERSRELAEEFGKQS-
	. :: : .: .* *: **

Figure 54: MUSCLE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10830 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered randomly and are listed from top to bottom as followed: *C. burnetii, C. mudrowiae, A. lusitana, N. mobilis, A. ehrlichii, A. mobile, T. denitrificans, N. halophilus, N. watsonii, C. bacterium, H. archaeon.* Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid (MUSCLE, ">https://www.ebi.ac.uk/Tools/msa/muscle/>).

Figure 55: MUSCLE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10830 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *C. burnetii*, *C. mudrowiae*, *A. lusitana*, *N. mobilis*, *A. ehrlichii*, *A. mobile*, *T. denitrificans*, *N. halophilus*, *N. watsonii*, *C. bacterium*, *H. archaeon*. The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (MUSCLE, <https://www.ebi.ac.uk/Tools/msa/muscle/>).

Figure 56: MUSCLE multiple sequence alignment real phylogenetic tree for *Coxiella burnetii* gene BMW92_RS10830 and the top 10 organism sequences similarities selected. Organisms sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *C. burnetii*, *C. mudrowiae*, *A. lusitana*, *N. mobilis*, *A. ehrlichii*, *A. mobile*, *T. denitrificans*, *N. halophilus*, *N. watsonii*, *C. bacterium*, *H. archaeon*. The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (MUSCLE, <https://www.ebi.ac.uk/Tools/msa/muscle/>).

MUSCLE Sequence Logo

Figure 57: Sequence logo generated from the MUSCLE multiple sequence alignments of *Coxiella burnetii* gene BMW92_RS10830 and the top 10 organism sequences similarities selected. Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid. The conservation of each amino acid among residue across similar sequences is represented by the height of each single letter abbreviation of the amino acid. (WebLogo, <https://weblogo.berkeley.edu/logo.cgi>).

T-COFFEE

A.ehrlichii	MSNNT	LC	FIGG	GNMA	RSL	IGGI	LLA	DGF	DPÇ	AVF	VA	DPD	AGKF	DD:	LA	IRF G
A.lusitana	MHTP	IS	IIGA	GNMG	SSL	IGG	LIK	DGH	PSD	KLV	IAA	DPS	GEKI	TQ	LK	KFD
A.mobile	MTMKT	LC	FIGG	GNMA	RSL	IGG	LLT	DGY	DPC	AIF	VA	EPD	AGKF	ED.	LA	IRFG
C.bacterium	MKDVN	IIA	FIGG	GNMA	TSL	IGG	LLA	DHV	SPA	RLC	VA	DRD	PAQF	EH.	LAA	AQFG
C.burnetii	MNTSN	ITT	FIGG	GNMA	RNI	VVG	LIA	NGY	DPN	RIC		NRS	L <mark>D</mark> KI	DF	FK	KCG
C.mudrowiae	MRIAN	ITT	FIGG	GNMA	CNI	VVG	LLA	NGY	DSN			NPT:	SDKI	TF	FRI	KCK
H.archaeon	MNDAS	LT	FIGG	GNMA	ASL	VGGI	LIA	DGW	DPA	RIF	VA	DPD	AGRF	ER	MAA	RHQ
N.halophilus	MNEKT	LA	FIGG	GNMA	TSL	IGG	LIA	DGR	NAÇ	TIV	IVA	DPDI	RSKI	DA	LHF	IRFS
N.mobilis	MAEES	IT	FIGG	GNMA	YSL	VGGI	LIA	DGY	RAF	RVI	VA	DPDI	PAKF	(MD	LAI	RF R
N.watsonii	MSEQ1	LA	FIGG	GNMA	ASL	IGG	LVA	DGR	DAC	AIV	IVA	DPDI	RRKI	DA	LH	RFG
T.denitrificans	MEQG]	IS	FIGG	GNMC	SSL	VGGI	LIA	DGY	APE	RIF	VS	DPGI	EETI	AS	LR <i>I</i>	ARFG
	*	:	:**.	* * *	.:	: *:	*:	:	•	:	.:	:			:	:
A.ehrlichii	VRVYA	DN:	L <mark>E</mark> AA	ADAD	TVI	LAV	KPQ	VVR	TAC	EQI	VA	GSGI	DAGR	LF	ISJ	[AAG
A.lusitana	INTTS	DN	AQAI	QAAL	TIT	FAV	KPQ	AFA	HVA	LPI	KK	VIA	ERKP	VLY	ISI	[AAG
A.mobile	VRVH	DN.	LEAA	ANAÇ	AVI	LAV	KPQ	VIR	PVC	EQI	AG	AEAO	GKGP	VY	ISI	[AAG
C.bacterium	VRTSE	DN	AACA	EDAD	VIV	LAV	KPQ	VLH	EVC	EAI	TD	S <mark>V</mark> QI	RKQP	VLV	۷S۱	/AAG
C.burnetii	VHTTÇ	2 <mark>D</mark> N	RQGA	LNAC	VVV	LAV	KPH	QIK	MVC	EEI	KD	ILS	ETKI	LV	ISI	LAVG
C.mudrowiae	VRTTÇ	QNN.	R <mark>EGA</mark>	TNAC	AII	LAV	KPN	Q V K	GVC	EEI	KD	IVN	FLHP	LI	ISV	/AVG
H.archaeon	VSTT	DN	QAAV	SDAD	VVV	LAV	KPQ	VMA	AVI	'Q <mark>EI</mark>	AA	GIA	<u>2QQ</u> F	VLY	ISI	[AAG
N.halophilus	VNTTE	DN.	LQAA	QEAE	VVV	LAV	KPQ	QLR	TVA	TGI	KS	VVT	SSQP	LW	LT]	[AAG
N.mobilis	IHVH	DN	RKAV	LRAA	AVV	LAV	KPQ	IIK	SVI	EPI	GP	ILR	EQKS	LV	ISI	[AAG
N.watsonii	VNTA	DN	IQVA	QDAA	IIV	LAV	KPQ	QLR	SVV	TQI	KN	VATI	LSQP	LW	LT]	[AAG
T.denitrificans	VHTTH	IDN.	REAA	AGAG	VVV	LAV	KPQ	VLP	KVA	AEI	AP	VVQI	EHGT	LV	VS]	[AAG
	: .	:*		*	::	:**	**:	•	•	4	¢			:	:::	* • *
A.ehrlichii	VREPI		RWLG	G–QA	AVV	RTM	PNT	PSL	VGI	'G <mark>A</mark> 'I	AL	YANI	DRVK	ER	QRI	LAE
A.lusitana	IREAS	SIQ	QWLN	G– <mark>K</mark> I	PIV	RAM	PNT	PAL	IGC	'G <mark>A</mark>]	AL	YANI	ΡΥΥΊ	ES	QRI	ILAE
A.mobile	VREPI		RWLG	G-SA	AVV	RTM	PNT	PSL	VGI	'G <mark>A</mark> 'I	AL	YANI	PQVS	EP	QRI	LAE
C.bacterium	VRTDS	LR	RWLG	GGDV	VAIV	RAM	PNT	PAL	LQS	G A J	GL	YAC	rg <mark>v</mark> s	EE	QRI	DLAE
C.burnetii	VTTPI	IE	KWLG	K-AS	RIV	RAM	PNT	PSS	VRA	GAJ	GL	FAN	ETVD	KD	QKI	ILAE
C.mudrowiae	VRVKI	LQ	KWLQ	S-EF	AIV	RAM	PNT	PAS	VGA	GAJ	AL	FAN	EKAT	KE	QRI	ILAE
H.archaeon	IREST	'LR	DWLG	A-DI	AIV	R TM I	PNT	PAL	VQS	G <mark>A</mark> J	AL	Y <mark>A</mark> N'	FAVS	DG	QRS	LAE
N.halophilus	IRIP	DLE	RWLG	G-PA	PIV	RAM	PNT	PAL	VQA	GAJ	AL	FAN	AQTN	P Q	Q <mark>R</mark> Ç	<u>MAE</u>
N.mobilis	VREPI	IS	RWLG	G–QI	AVV	RTM	PNT	PAL	VRA	GAJ	AL	YAN	EYVS	QN	QRI	DLAE
N.watsonii	IGTP	VE	AWLG	G-PA	PIV	RAM	PNT	PAL	VQA	GAI	AL	FAN]	PHTS	PN	Q <mark>R</mark> Ç)T <mark>AE</mark>
T.denitrificans	IRTT	DLQ	RWLG	A-GV	ALV	R TM I	PNT	PAL	VKS	G <mark>A</mark>]	AL	FAT	AAVT	AA	QRI	QAE
	:	:	**		:*	*:*	* * *	*:	:	***	* • *	:*	•		*:,	**

A.ehrlichii	SLMRAVGLVVW	LDDEAQM	DTVTAVS	GSGPAY	FFLLM <mark>E</mark> A	AIEDAAR	DLGLPG
A.lusitana	SILRAVGVVVW	LNDEKLM	DTVTALSO	SSGPAY	FFLMM <mark>E</mark> Z	ALQEAAE	DLGLPT
A.mobile	SLMRAVGLVVW	LDDETQM	DTVTAVSO	SSGPA Y	FFLLM <mark>E</mark> A	AI <mark>EEAA</mark> R	EQGLPA
C.bacterium	AILRATGLTLW	VDDEAQM	DIVTALSO	SSGPA Y	FFRVME	GLEKAAT	ELGLPA
C.burnetii	SIMRAVGLVIW	VSSEDQI	EKIAALSO	SSGPA Y	IFLIM <mark>E</mark> A	ALQEAAE	QLGLTK
C.mudrowiae	SILRAVGLVVW	LSLEDQI	DEVAALSO	SSGPA Y	IFFVM <mark>E</mark> A	ALQEAGE	GLGLPK
H.archaeon	SILRAVGLVIW	VEDEAQM	DAVTALSO	SSGPA Y	FFFFM <mark>E</mark> A	ALQAAGE	ELGLPA
N.halophilus	SVLRAVGLTLW	LKDENLM	EVVTALSO	SSGPAY	FFLVM <mark>E</mark> A	AMEKAAI	DLGLDD
N.mobilis	SLLRAVGIIQW	LDDETLL	DIVTALSO	SSGPAY	FFLLME	LEAAAI	ELGLPE
N.watsonii	SVLRAVGLTLW	LNDENLM	EVVTALSO	GGGPAY	FFLVM <mark>E</mark> A	AMEKAAI	DLGLES
T.denitrificans	SVLRAVGLTLW	LENEEQM	DAVTALSO	SSGPAY	FFLVM <mark>E</mark> A	AMQGAAQ	AIGLPE
	:::** * * * *	:. * :	: ::*:**	* • * * * *	* • **	:: *.	* *
A.ehrlichii	ETARLLTIETA	LGAAKMA	LESDESPA	QLRQR	VTSPGG1	TTEHALH	IVLEDGE
A.lusitana	ETARLLTLQTA	L <mark>GAARMA</mark>	IESGTSLA	ELRRK	VTSPGGI	TTEKAIS	VLEENN
A.mobile	ETARLLTIETA	LGAAKMA	LESDESPO	QLRQR	VTSPGG	TTEHALH	ILLEDGE
C.bacterium	QTARLLTLQTA	LGAARMA	LESSEPVA	TLRKR	VTSPGG1	TTEQGLK	AMEAGD
C.burnetii	ETAELLTEQTV	LGAARMA	LETEQSV	/QLRQF	VTSPGG1	TTEQAI K	VLESGN
C.mudrowiae	ETVQLLTAQTV	WGAARMS	LEAEEDLV	/ELRRF	VTSPGG1	TTEQAI K	VLKSGN
H.archaeon	GTARLLALQTA	FGAARMA	LESSDDAA	TLRHH	VTSPGG1	TTERAIO	ILQDGG
N.halophilus	STARLLTLETA	FGAAKMA	LESEEDSI		VTSPGG1	TTERAIT	ALEEAN
N.mobilis	QTARLLTLETA	L <mark>G</mark> AARMA	LESDEDPO	RLRLR	VTSPGG1	TTEAATR	VLESGG
N.watsonii	NTARLLTLETA	F <mark>G</mark> AAKMA	LKSEEGC A	ASLRQR'	VTSPGG1	TTERAIA	ALEEAN
T.denitrificans	RTARLLTLQTA	F <mark>G</mark> AAKMA	LESDEEPS	SLLRQ R	VTSPGG1	TTERALN	VLEEGK
	***: :*.	***:*:	:::	* *	* * * * * * *	*** 。	::
A.ehrlichii	YRALMTRAVQA	AAKRAQE	LGQMLGE-	Q			
A.lusitana	IRRLFKQALQA	AKLRSEE	LATLLGK-	E			
C bactorium	TDALLCKULKA	ADDCDE		v -m			
C burnotij				1			
C. mudreui ao				<u>0</u>			
	LPELFTNVLKA	AVQRAKE	LOVELEKS				
H.archaeon	LAKLISSAVRG	AAEKSKE.		2-5			
N. nalopnilus	IKEAFAHALRA		LAEELGTL				
	AUKLFQQALQA	ATTRAGE	LGKLLGE-	Q			
N.watson11	IRKAF ARALQA		LAQELGSE	KHA			
T.denitrificans	LRELFRDALTS.	ARDRSRE	LAAILGRI	DAD			

: .: .* *: **. .

Figure 58: T-COFFEE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10830 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity

originated. Organism sequences were ordered randomly and are listed from top to bottom as followed: *A. ehrlichii, A. lusitana, A. mobile, C. bacterium, C. burnetii, C. mudrowiae, H. archaeon, N. halophilus, N. mobilis, N. watsonii, T. denitrificans*. Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid (T-COFFEE, https://www.ebi.ac.uk/Tools/msa/tcoffee/).

Figure 59: T-COFFEE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10830 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *A. ehrlichii, A. mobile, N. mobilis, C. bacterium, H. archaeon, A. lusitana, C. burnetii, C. mudrowiae, N. halophilus, N. watsonii, T. denitrificans*. The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (T-COFFEE, https://www.ebi.ac.uk/Tools/msa/tcoffee/).

Figure 60: T-COFFEE multiple sequence alignment real phylogenetic tree for *Coxiella burnetii* gene BMW92_RS10830 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *A. ehrlichii, A. mobile, N. mobilis, C. bacterium, H. archaeon, A. lusitana, C. burnetii, C. mudrowiae, N. halophilus, N. watsonii, T. denitrificans.* The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (T-COFFEE, https://www.ebi.ac.uk/Tools/msa/tcoffee/).

Figure 61: Sequence logo generated from the T-COFFEE multiple sequence alignments of *Coxiella burnetii* gene BMW92_RS10830 and the top 10 organism sequences similarities selected. Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid. The conservation of each amino acid among residue across similar sequences is represented by the height of each single letter abbreviation of the amino acid. (WebLogo, <https://weblogo.berkeley.edu/logo.cgi>).

Protein Localization

SignalP

SignalP-5.0 prediction (Gram-negative): Sequence

Figure 62: SignalP 5.0 prediction (Gram-negative) for gene BMW92_RS10830 of *Coxiella burnetii*. The TAT (Tat/SPI), LIPO (Sec/SPII), and CS probability scores were all below 0.0128 (1.28%) which results in the likelihood of the protein being a signal peptide as highly unlikely and can confirm there is no signal peptide of these protein types. The SP (Sec/SPI) signal peptide probability score was 0.0515 (5.15%). This probability score results in the likelihood of the SP signal peptide as being highly unlikely. The program calculated the probability scores for OTHER as 0.9336 (93.36%). This probability score indicates the protein from gene

BMW92_RS10830 has another protein classification that is not related to similar function or type as a signal peptide (SignalP, <http://www.cbs.dtu.dk/services/SignalP/>).

LIPOP

```
# Sequence CYT score=-0.200913
# Cut-off=-3
Sequence LipoP1.0:Best CYT 1 1 -0.200913
# NO PLOT made - less than 4 putative cleavage sites predicted
```

Figure 63: LipoP 1.0 was unable to generate a plot graph due to there being less than four predicted putative cleavage sites. The best localization prediction resulted in the highest scoring class being the cytoplasmic protein class (LipoP, <http://www.cbs.dtu.dk/services/LipoP/>).

TMHMM

#	WEBSEQUENCE	Length: 274			
#	WEBSEQUENCE	Number of predicte	ed TMHs:	0	
#	WEBSEQUENCE	Exp number of AAs	in TMHs:	0.59771	
#	WEBSEQUENCE	Exp number, first	60 AAs:	0.37368	
#	WEBSEQUENCE	Total prob of N-in	n:	0.05194	
WI	EBSEQUENCE	TMHMM2.0	outside	1	274

Figure 64: TMHMM posterior probability displayed a line graph that predicts the localization of the protein coded from BMW92_RS10830 as entirely outside the membrane. The red line, representative of the protein being located in the transmembrane, was less than 0.005 (.50% probability) across the entirety of the line graph. This is indicative of the protein being located within the transmembrane as highly unlikely. The blue line, representative of the protein being located inside the membrane, was at 0.05 (5% probability). This is indicative of the protein being located inside of the membrane as highly unlikely. The magenta line, representative of the protein being located inside of the membrane as highly unlikely.

protein being located outside the membrane, was at 0.95 (95% probability). This is indicative of the protein being located outside of the membrane as highly likely (TMHMM, http://www.cbs.dtu.dk/services/TMHMM/).

BOMP

The total number of valid proteins submitted is: 1 The total number of integral β-barrel outer membrane proteins predicted is: 0

Sequence name Category Best BLAST hit

Figure 65: The BOMP test result identified there are no integral beta-barrel outer membrane proteins for gene BMW92_RS10830 (BOMP, <http://services.cbu.uib.no/tools/bomp>).

PSORTb

Cytoplasmic

9.26

SeqID: C.burnetii		
Analysis Report:		
CMSVM-	Unknown	[No details]
CytoSVM-	Unknown	[No details]
ECSVM-	Unknown	[No details]
ModHMM-	Unknown	[No internal helices found]
Motif-	Unknown	[No motifs found]
OMPMotif-	Unknown	[No motifs found]
OMSVM-	Unknown	[No details]
PPSVM-	Unknown	[No details]
Profile-	Unknown	[No matches to profiles found]
SCL-BLAST-	Cytoplasmic	[matched 71159808: Pyrroline-5-carboxylate reductase]
SCL-BLASTe-	Unknown	[No matches against database]
Signal-	Unknown	[No signal peptide detected]
Localization Scor	es:	
Cytoplasmic	9.26	
CytoplasmicMemb	orane 0.24	
Periplasmic	0.48	
OuterMembrane	0.01	
Extracellular	0.01	
Final Prediction:		

Figure 66: The PSORTb test resulted in an analysis report that identified no detectable internal helices, motifs, or signal peptides. The PSORTb localization scores resulted in a 9.26 value for the cytoplasmic location. The localization score for cytoplasmic membrane was 0.24. The localization score for periplasmic was 0.48. The localization score for the outer membrane location was 0.01. The localization score for the extracellular location was 0.01. The calculated localization scores for gene BMW92_RS10830 resulted in the final predictable location of the protein to be cytoplasmic (PSORTb, <https://www.psort.org/psortb/>).

PHOBIUS

ID UNNAMED

FT TOPO_DOM

1

274

//

NON CYTOPLASMIC.

Figure 67: The Phobius posterior probability line graph generated for gene BMW92_RS10830 resulted in a calculated prediction that the whole sequence contains no membrane helices. The grey line, representative of the predicted transmembrane helices location, was around 0.23 (23%) posterior probability from amino acids 91-117. The green line, representative of the predicted cytoplasmic transmembrane helices location, was around 0.15 (15%) posterior probability from amino acids 0-120; this changed to a posterior probability of 0.32 (32%) from amino acids 121-273. The blue line, representative of the predicted non-cytoplasmic transmembrane helices

location, was around 0.83 (83%) posterior probability from amino acids 0-91; the posterior probability changed to 0.68 (68%) from amino acids 121-273. The red line, representative of the presence or absence of a signal peptide, was 0.00 (0%) posterior probability (Phobius,).

BMW92_RS10835

The third gene, BMW92 RS10835, was analyzed using bioinformatic technology. Table 3 below contains the provided data regarding basic information. A protein isoelectric point calculator was used to determine the isoelectric point of the protein, protein length, and the number and prevalence of each amino acid that makes up the protein (Figure 68). The BLASTp search tool produced 100 matches ranked from highest sequence similarity to lowest sequence similarity. The top ten sequences with significant alignments that were not identical species to Coxiella burnetii were selected. The information recorded included the organism name, protein name, percent identity, precent positive, length of alignment match, e-values, and percent gap. The highest ranked match to the BMW92 RS10835 gene was pyridoxal phosphate-dependent enzyme [Rhipicephalus microplus] (Figure 69). The remaining nine matches to the BMW92 RS10835 gene all had a function as pyridoxal phosphate-dependent enzyme (Figures 70-78). The CDD identified four potential protein domains hits conserved (Figure 79). Four of the domain hits conserved and identified by the CDD belong to the PLPDE III superfamily (Figure 80). Specific domain hits involved the PLPD III Yggs like, YggS, and Ala racemase N. One domain hit conserved and identified as a non-specific domain hit was TIGR00044. The protein classification identified by the CDD was pyridoxal phosphatedependent enzyme. Four of the domain hits sequences were aligned with the query sequence based off the amino acids that are highly conserved between both sequences (Figures 81-84). The MUSCLE program generated a multiple sequence alignment (MSA); each amino acid in the sequence was assigned a distinct color to distinguish the amino acids being compared (Figure 85). The MUSCLE program generated two phylogenetic trees using the multiple sequence alignments to further confirm sequence similarity. The results displayed the numbers followed

behind each organism at the end of each leaf node which displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and Coxiella *burnetii.* The use of a phylogenetic cladogram (Figure 86) and real phylogenetic tree (Figure 87) provided further understanding of the relatedness of common ancestors and organism sequences that are conserved. Each of the letter's heights produced correspond to the conservation of the amino acid residue across similar sequences. WebLogo produced a sequence logo that was generated from the MUSCLE multiple sequence alignments of Coxiella burnetii gene BMW92 RS10835 and the top 10 organism sequences similarities selected (Figure 88). Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid. Each of the single letter amino acid abbreviation's heights correspond to the conservation of the amino acid residue across similar sequences. The T-COFEE program generated another multiple sequence alignment to further confirm sequence similarity depicted with in the MUSCLE MSA (Figure 89). The T-COFFEE program generated two phylogenetic trees, phylogenetic cladogram (Figure 90) and real phylogenetic tree (Figure 91), using the multiple sequence alignment which displayed the genetic proximity and similarity between Coxiella burnetii and selected organisms from the BLASTp search. WebLogo constructed a sequence logo from the T-COFFEE multiple sequence alignments of Coxiella burnetii gene BMW92 RS10835 and the top 10 organism sequences similarities selected to further display sequence similarity and conservation of sequences. Each of the single letter amino acid abbreviation's heights correspond to the conservation of the amino acid residue across similar sequences (Figure 92). Protein localization results included SignalP, LipoP, TMHMM, BOMP, PSORTb, and Phobius. The SignalP graphical illustration identified that there is no presence of a signal peptide for the entirety of the protein sequence (Figure 93). The LipoP resulted in the

highest scoring class being the cytoplasmic protein class (Figure 94). The TMHMM test resulted in a graphical illustration, statistics, and a list of the predicted transmembrane helices and the predicted location of the intervening loop regions. The TMHMM test resulted and displayed that the whole sequence is highly unlikely to contain any transmembrane helices and that the majority of the protein has a high probability of being located outside of the membrane (Figure 95). The BOMP test result identified there are no integral beta-barrel outer membrane proteins (Figure 96). The PSORTb test resulted in an analysis report that identified no detectable internal helices, motifs, or signal peptides; the localization scores calculated the predictable location of the protein to be cytoplasmic (Figure 97). The Phobius test resulted in a line graphical illustration that identified a low probability of transmembrane helices present; the overall result calculated by Phobius resulted in the entire protein sequence as non-cytoplasmic (Figure 98).

Basic Information

Genome	Replicon	Locus Tag	Old Locus Tag			
Coxiella burnetii	NZ_CP018005	BMW92_RS10835	BMW92_10465			
Genomic	Products	Length	Start and End			
Coordinates			Position			
19649121965598	pyridoxal phosphate-	687 / 228	1964912 - 1965598			
	dependent enzyme					
Molecular	Average	IPC Protein	Protein Length			
Weight	Isoelectric Point					
25645.56854 Da	9.86	8.76	228 amino acids			
Nucleotid	le Sequence	Amino Acid Sequence				
caagcggaaaaagaatttag ttttagctgtgagtaaatcgca ctattgcagcaggacaaaga gaagcgttggtaaaaataaaa atggcattttataggtgtcattc tccacaaattttgattgggtaca cttcagaattacatcattatcga atttgcattcaggtaaacatca tgtagacttaacgaatttatcag gtttgatcgtctgaggttgcga cagaaagattttaatgcgcaa agaagcgcaacagcaattaa gtcttgtcattaggaatgaaga	ccgctcgcctaacgcggtttcgc atctcttgataagataa	AVSKSQSLDKIKEA ALVKIKALRAHPLI TNFDWVQSVSRLE SICIQVNISEEKTKS QFDRLRLRGLMTII KLKEAQQQLIKKG AAIAAGSTMVRIG	AIAAGQRQFGENYLQE EWHFIGVIQTNKTRLIS VASELHHYRPLELPPL GVDLTNLSEFAKAVS PAYQKDFNAQKATFE LPLDVLSLGMTHDFR TGIFGPREDR			

 Table 3: Gene BMW92_RS10835 basic information

Figure 68: Protein isoelectric point calculator. The number and prevalence of each amino acid in the protein coded from the BMW92_RS10835 gene of *Coxiella burnetii* (Kozlowski, Biology Direct, http://isoelectric.org/).

Sequence Similarity

BLAST

YggS family pyridoxal phosphate enzyme [Beggiatoa sp. 4572_84]

Sequence ID: <u>OQY55381.1</u> Length: 230 Number of Matches: 1

<u>See 1 more title(s)</u> ✓ <u>See all Identical Proteins(IPG)</u>

Range 1: 9 to 227 GenPept Graphics

Vext Match 🔺 Previous Match

Score		Expect Method	Identities	Positives	Gaps
251 bits	642)	4e-81 Compositional matrix adjust.	122/219(56%)	159/219(72%)	0/219(0%)
Query	7	IKRITTEIRQAEKEFSRSPNAVSLLAV	SKSQSLDKIKEAI	IAAGQRQFGENYI +GO FGENYI	QEALVKIK
Sbjct	9	IKKVRKRIAEAARQFARSPGSIRLLAV	SKTRPVEDIVTA	FNSGQTCFGENYL	QEAVPKID
Query	67	ALRAHPLEWHFIGVIQTNKTRLISTNF ALR +PLEWHFIG +O+NKTRLI+ NF	DWVQSVSRLEVAS DWVOS+ +L+ A	SELHHYRPLELPP L+ RP PP	PLSICIQVN PL++CIOVN
Sbjct	69	ALRDYPLEWHFIGPLOSNKTRLIAENF	DWVQSLDKLKHAÇ	QRLNAQRPENFPF	PLNVCIQVN
Query	127	ISEEKTKSGVDLTNLSEFAKAVSQFDR ISEE KSGV LT+L A+A+++ R	LRLRGLMTIPAY(LRLRGLM +P	OKDFNAQKATFEK +DF O+ F	LKEAQQQL L+ A +L
Sbjct	129	ISEETQKSGVHLTDLPTLAQAIAELPR	LRLRGLMALPTLO	CODFEQORIPFRA	LRIAYLKL
Query	187	IKKGLPLDVLSLGMTHDFRAAIAAGST + GL LD LS+GMT D AAIA G+T	MVRIGTGIFGPR VRIGTGIFG R	225	
Sbjct	189	QESGLALDTLSMGMTGDMVAAIAEGAT	FVRIGTGIFGER	227	

Figure 69: BLAST first match for BMW92_RS10835 sequence from organism Beggiatoa

sp.4572 84 with an e-value of 4e-81, 56% identity, 72% positives, 0% gaps (dissimilarity), and

an identity of pyridoxal phosphate-dependent enzyme (BLAST,

YggS family pyridoxal phosphate-dependent enzyme [Candidatus Coxiella mudrowiae]

Sequence ID: WP_048875731.1 Length: 226 Number of Matches: 1

See 1 more title(s) Y See all Identical Proteins(IPG)

Range 1: 1 to 226 GenPept Graphics

Vext Match 🔺 Previous Match

Score		Expect	Method			Ident	ities	Positives		Gaps	-
313 bits	s(801)	3e-105	Compos	itional ma	trix adjust	t. 146/	/226(65%)	186/226	6(82%)	0/226(0%)	_
Query	1	MSISE1 MSI++1	NIKRITT NI+ I	EIRQAEK +IR+AEK	EFSRSPNA ++ R ++	VSLLA + LLA	VSKSQSLD VSKSO++D	KIKEAIA K+K AIA	AGQRQI GO I	FGENYLQE FGENY++E	60
Sbjct	1	MSIAK	NIRNIEQ	KIREAEK	KYGREHHS	SIILLA	VSKSQNID	KLKAAIA	GGQTLI	FGENYVKE	60
Query	61	ALVKII A+ KI	KALRAHP AL+	LEWHFIG LEWHFIG	VIQTNKTR IO NKTR	LISTN	FDWVQSVS F+WV S+S	RLEVASE RL++A +	LHHYRI L+ YR	PLELPPLS E PL+	12
Sbjct	61	AITKI	ALQNLH	LEWHFIG	AIQVNKTR	LIATH	FEWVHSIS	RLKIAEQ	LNQYR	FSEQSPLN	12
Query	121	ICIQVI ICIO+1	NISEEKT NISEEK	KSGVDLT KSG+ L	NLSEFAKA +L +F	VSQFD ++OF	RLRLRGLM RLRLRGLM	TIPAYQK TIPA++K	DFNAQI DF AOI	XATFEKLK X FEK+K	18
Sbjct	121	ICIQII	NISEEKN	KSGISLV	DLPKFVAE	INQFK	RLRLRGLM	TIPAFKK	DFKAQI	KHDFEKIK	18
Query	181	EAQQQI AQQQI	LIKKGLP LI++G	LDVLSLG LD LS+G	MTHDFRAA MTHDF+AA	IAAGS	TMVRIGTG TMVRIGTG	IFGPRE IFGPR+	226		
Sbjct	181	NAQQQI	LIEEGFL	LDTLSMG	MTHDFQAA	IAAGS	TMVRIGTG	IFGPRD	226		

Figure 70: BLAST second match for BMW92 RS10835 sequence from organism Coxiella

mudrowiae with an e-value of 3e-105, 65% identity, 82% positives, 0% gaps (dissimilarity), and

an identity of pyridoxal phosphate-dependent enzyme (BLAST,

YggS family pyridoxal phosphate-dependent enzyme [Coxiella endosymbiont of Amblyomma americanum]

Sequence ID: WP_039670151.1 Length: 231 Number of Matches: 1

<u>See 2 more title(s)</u> ✓ <u>See all Identical Proteins(IPG)</u>

Range 1	L: 2 to	223 GenPept Graphics	Previous
Score		Expect Method Identities Positives Gaps	
304 bits	s(779)	6e-102 Compositional matrix adjust. 144/222(65%) 178/222(80%) 0/222(0%	6)
Query	6	NIKRITTEIRQAEKEFSRSPNAVSLLAVSKSQSLDKIKEAIAAGQRQFGENYLQEALVKI NIK I IR AEK++ R PN+V LLAVSKSO +DK+K AI+ GO FGENY+OEAL+K+	65
Sbjct	2	NIKNIKKRIRAAEKKYGRKPNSVILLAVSKSQHIDKLKTAISEGQTCFGENYVQEALIKM	61
Query	66	KALRAHPLEWHFIGVIQTNKTRLISTNFDWVQSVSRLEVASELHHYRPLELPPLSICIQV ALR + LEWHFIG IOTNK +I+ +F WV SVS+L+ A +L+ YR ELPPL+ICIOV	125
Sbjct	62	SALRNYALEWHFIGSIQTNKIPVIAAHFGWVHSVSKLKTAEKLNKYRIPELPPLNICIQV	121
Query	126	NISEEKTKSGVDLTNLSEFAKAVSQFDRLRLRGLMTIPAYQKDFNAQKATFEKLKEAQQQ N+S E++K+G+ L +LS+FA +S F RLRLRG+M IPAY DF AOK FEK+K AOO+	185
Sbjct	122	NVSMEESKNGISLVDLSKFATEISNFKRLRLRGVMAIPAYNLDFCAQKFNFEKIKNAQQK	181
Query	186	LIKKGLPLDVLSLGMTHDFRAAIAAGSTMVRIGTGIFGPRED 227 LIK+GL LD LS+GMTHDF+AAIAAGSTMVRIGTGIFG R++	
Sbjct	182	LIKQGLSLDTLSMGMTHDFQAAIAAGSTMVRIGTGIFGSRDN 223	

Figure 71: BLAST third match for BMW92_RS10835 sequence from organism *Amblyomma americanum* with an e-value of 6e-102, 65% identity, 80% positives, 0% gaps (dissimilarity),

and an identity of pyridoxal phosphate-dependent enzyme (BLAST,

YggS family pyridoxal phosphate-dependent enzyme [Coxiella endosymbiont of Amblyomma sculptum]

Sequence ID: WP 159748531.1 Length: 226 Number of Matches: 1

See 1 more title(s)
See all Identical Proteins(IPG)

Range 1: 1 to 225 GenPept Graphics

Vext Match A Previous Match

Score		Expect Method Identities Positives Gaps	
304 bits	s(778)	8e-102 Compositional matrix adjust. 142/225(63%) 180/225(80%) 0/225(0%)
Query	1	MSISENIKRITTEIRQAEKEFSRSPNAVSLLAVSKSQSLDKIKEAIAAGQRQFGENYLQE	6
Sbjct	1	MTVSTNIKNIRKEIRAAERQYGRKPNSIILLAVSKSQATDKLKTAIFEGQTSFGENYVQE	6
Query	61	ALVKIKALRAHPLEWHFIGVIQTNKTRLISTNFDWVQSVSRLEVASELHHYRPLELPPLS	1
Sbjct	61	ALPKMRDLHNYHLEWHFIGSIQSNKTRTIASHFSWVHSVSRLKIAEQLNKYRMSELSPLN	1
Query	121	ICIQVNISEEKTKSGVDLTNLSEFAKAVSQFDRLRLRGLMTIPAYQKDFNAQKATFEKLK	1
Sbjct	121	ICIQVNLSNEKNKSGINLTDLPKFAAEINNFERLRLRGIMAIPAYVGDFSAQKHEFEKIK	1
Query	181	EAQQQLIKKGLPLDVLSLGMTHDFRAAIAAGSTMVRIGTGIFGPR 225	
Sbjct	181	NTQKQLAKKGIVLDTLSMGMTHDFRAAIAAGSTMLRIGTGVFGLR 225	

Figure 72: BLAST fourth match for BMW92_RS10835 sequence from organism *Amblyomma sculptum* with an e-value of 8e-102, 63% identity, 80% positives, 0% gaps (dissimilarity), and an identity of pyridoxal phosphate-dependent enzyme (BLAST,

YggS family pyridoxal phosphate-dependent enzyme [Coxiella endosymbiont of Rhipicephalus microplus]

Sequence ID: WP_102156652.1 Length: 231 Number of Matches: 1

<u>See 1 more title(s)</u> ✓ <u>See all Identical Proteins(IPG)</u>

			V INEXT MALCH	Frevious Match
Score 317 bits	(811)	ExpectMethodIdentitiesPositive9e-107Compositional matrix adjust.149/228(65%)187/22	Gaps 8(82%) 0/228(0%)	
)uery	1	MSISENIKRITTEIRQAEKEFSRSPNAVSLLAVSKSQSLDKIKEAI. MSIS NIK I +IR+AEK++ R P+++ ILAVSKSO+++++K AI	AAGQRQFGENYLQE	60
Sbjct	1	MSISTNIKNINQKIREAEKKYDRKPHSIILLAVSKSQNINQLKAAI	IGGQVRFGENYLQE	60
)uery	61	ALVKIKALRAHPLEWHFIGVIQTNKTRLISTNFDWVQSVSRLEVAS	ELHHYRPLELPPLS	120
Sbjct	61	AL KT ALT LEWHFIG IQ NKIKLITITTWV STSKLTTA ALNKMVALQNPHLEWHFIGAIQVNKTRLIATHFNWVHSISRLKIAE	2LNQYRTAKKSPLN	120
Juery	121	ICIQVNISEEKTKSGVDLTNLSEFAKAVSQFDRLRLRGLMTIPAYQ	KDFNAQKATFEKLK	180
Sbjct	121	ICIQINISEEK KSGT L TL F TTQF KLKLKGLMTIPA T ICIQINISEEKNKSGISLPDLPRFVAVINQFKRLRLRGLMTIPAVK	KDFNSQKHDFEKIK	180
)uery	181	EAQQQLIKKGLPLDVLSLGMTHDFRAAIAAGSTMVRIGTGIFGPRE	DR 228	
Sbjct	181	AQQ+L1+KG LD LS+GMTHDF+AAIAAGSTMVRIGTGIFGPRE NAQQKLIEKGFLLDTLSMGMTHDFQAAIAAGSTMVRIGTGIFGPRE	D+ DQ 228	

Figure 73: BLAST fifth match for BMW92_RS10835 sequence from organism *Rhicephalus*

microplus with an e-value of 9e-107, 65% identity, 82% positives, 0% gaps (dissimilarity), and

an identity of pyridoxal phosphate-dependent enzyme (BLAST,

YggS family pyridoxal phosphate-dependent enzyme [Gammaproteobacteria bacterium]

Vext Match 🔺 Previous Match

Sequence ID: <u>RKZ85264.1</u> Length: 227 Number of Matches: 1

Range 1: 2 to 225 GenPept Graphics

Score		Expect Method	Identities	Positives	Gaps	
252 bits	s(643)	3e-81 Compositional matrix adjust.	122/224(54%)	161/224(71%)	0/224(0%)	
Query	3	ISENIKRITTEIRQAEKEFSRSPNAVS IS+ + + I +A ++F+R+P+++	LLAVSKSQSLDK	IKEAIAAGQRQFO I AI +GOR FO	SENYLQEAL SE+YLOEA+	
Sbjct	2	ISDALTTVRQRIAEAARQFARAPDSIQ	LLAVSKTRPVAD	IVTAIESGORCFO	GESYLQEAI	
Query	63	VKIKALRAHPLEWHFIGVIQTNKTRLI KI ALR +PL+WHFIG +O+NKTRLI	STNFDWVQSVSR	LEVASELHHYRPI + A L+ RP	LELPPLSIC LPPL++C	
Sbjct	62	SKIGALRNYPLQWHFIGPLQSNKTRLI	AEHFDWVQSLDN	EKHAVRLNAQRP	THLPPLNVC	
Query	123	IQVNISEEKTKSGVDLTNLSEFAKAVS IOVNIS E KSG+ LT L A+A++	QFDRLRLRGLMT	IPAYQKDFNAQKA +PA DFN O+	ATFEKLKEA F L A	
Sbjct	122	IQVNISNEPQKSGIRLTELPTLAQAIA	ELPRLRLRGLMA	LPAPCADFNQQRI	LPFRALHTA	
Query	183	QQQLIKKGLPLDVLSLGMTHDFRAAI OOL GL LD LS+GMT+D AAI	AGSTMVRIGTGI	FGPRE 226 FG RE		
Sbjct	182	YQQLQASGLALDTLSMGMTNDLAAAIA	EGATLVRIGTAI	FGERE 225		

Figure 74: BLAST sixth match for BMW92_RS10835 sequence from organism

Gammaproteobacteria bacterium with an e-value of 3e-81, 54% identity, 71% positives, 0%

gaps (dissimilarity), and an identity of pyridoxal phosphate-dependent enzyme (BLAST,

YggS family pyridoxal phosphate-dependent enzyme [Nitrosococcus halophilus]

Sequence ID: WP_013034657.1 Length: 231 Number of Matches: 1

See 1 more title(s)
See all Identical Proteins(IPG)

Range 1: 4 to 226 GenPept Graphics

Vext Match 🔺 Previous Match

Score		Expect	Method	ł			Identitie	S	Positiv	es	Gaps
249 bits	(635)	5e-80	Comp	ositiona	l matrix	adjust.	121/22	3(54%)	157/2	223(70%)	0/223(0%)
Query	3	ISEN:	IKRITI	FEIRQAE	EKEFSR: E+ F B	SPNAVS +V+	LLAVSK	SQSLDK	IKEAI T+ AT	AAGQRQF A GOR F	GENYLQEAL GENYLOEAL
Sbjct	4	IAQQI	LAQVQ	TRIAEAE	EQREGR	PAGSVT	LVAATK	TCSVSA	IRAAI	ACGQRAF	GENYLQEAL
Query	63	VKIK	ALRAHI	PLEWHFI		NKTRLI	STNFDW	VQSVSRI	LEVAS	ELHHYRPI	LELPPLSIC
Sbjct	64	PKIK	ELESEN	NLEWHF	GPIQS	NKTRDI	AAHFDW	VHSVDR	LKVAQ	RLNQQRPI	PELPPLNVC
Query	123	IQVN:	ISEEKT	rksgvdi	LTNLSE	FAKAVS	QFDRLR		IPAYQ +P	KDFNAQKA	ATFEKLKEA
Sbjct	124	LQVN	ISGEDS	SKSGTTI	PEELTE	LAKAVA	EMPRLS	LRGLMT	LPPLN	SDFEAQR	QPFRALHQL
Query	183	QQQL:	IKKGLI + GL	PLDVLSI	GMTHD	FRAAIA AATA	AGSTMV	RIGTGII R+G II	FGPR FG R	225	
Sbjct	184	WQELI	RQGGLI	KLDTLSI	GMTDD	LEAAIA	EGATLV	RVGAAI	FGRR	226	

Figure 75: BLAST seventh match for BMW92_RS10835 sequence from organism

Nitrosococcus halophilus with an e-value of 5e-80, 54% identity, 70% positives, 0% gaps

(dissimilarity), and an identity of pyridoxal phosphate-dependent enzyme (BLAST,

YggS family pyridoxal phosphate-dependent enzyme [Nitrosococcus watsonii]

Sequence ID: <u>WP_013221841.1</u> Length: 231 Number of Matches: 1

See 1 more title(s) See all Identical Proteins(IPG)

Range 1: 4 to 231 GenPept Graphics

Vext Match A Previous Match

Case		Evenet Method	Telentities	Desitives	Cana
Score		Expect Method	Identities	Positives	Gaps
249 bits	636)	4e-80 Compositional matrix adjust.	124/228(54%)	158/228(69%)	2/228(0%)
Query	3	ISENIKRITTEIRQAEKEFSRSPNAVS I+ + I T I OAE+ F RS +VS	LLAVSKSQSLDK	IKEAIAAGQRQFG I+ A+ GOR FG	ENYLQEAL ENYLOEAL
Sbjct	4	IALQLAEIYTRIAQAERRFGRSEGSVS	LVAASKTCPVSA	IRAAVVGGQRAFO	GENYLQEAL
Query	63	VKIKALRAHPLEWHFIGVIQTNKTRLI	STNFDWVQSVSR	LEVASELHHYRPI	ELPPLSIC
Sbjct	64	PKIKELETEGLEWHFIGPIQSNKTRDI	ATHFDWVHSVAR	LKIAQRLSQQRPE	PELAPLNVC
Query	123	IQVNISEEKTKSGVDLTNLSEFAKAVS	QFDRLRLRGLMT	IPAYQKDFNAQKA	ATFEKLKEA
Sbjct	124	LQVNISGESSKSGTTTQELAELAAAVI	EMPQLSLRGLMT	LPALNSDFEAQRF	RPFRALHQL
Query	183	QQQLIKKGLPLDVLSLGMTHDFRAAIA	AGSTMVRIGTGI	FGPREDR 22	28
Sbjct	184	WEELRQKGFALDSLSMGMTDDLEAAIA	EGATLVRVGTAI	FGSRPRKDR 23	31

Figure 76: BLAST eighth match for BMW92_RS10835 sequence from organism *Nitrosococcus watsonii* with an e-value of 4e-80, 54% identity, 69% positives, 0% gaps (dissimilarity), and an

identity of pyridoxal phosphate-dependent enzyme (BLAST,

YggS family pyridoxal phosphate-dependent enzyme [Thiotrichales bacterium]

Sequence ID: <u>HID82203.1</u> Length: 229 Number of Matches: 1

Range	1:	6	to	228	<u>GenPept</u>	<u>Graphics</u>	

Score		Expect Method	Identities	Positives	Gaps	
250 bits	(638)	2e-80 Compositional matrix adjust.	112/223(50%)	163/223(73%)	0/223(0%)	
Query	3	ISENIKRITTEIRQAEKEFSRSPNAVS I I ++ IRO E+++ R+ N+V	LLAVSKSQSLDK	IKEAIAAGQRQFG I+EAI GO FG	ENYLQEAL ENY OE	62
Sbjct	6	ICNQITKLRESIRQYEQQYGRTENSVR	LLAVSKTQAIES	IQEAIRCGQMDFG	ENYAQELA	65
Query	63	VKIKALRAHPLEWHFIGVIQTNKTRLI K + + + WHFIG IO+NKT+++	STNFDWVQSVSR	LEVASELHHYRPI +++A L+ RP	ELPPLSIC	12
Sbjct	66	EKARVIGQEVVHWHFIGPIQSNKTKML	SETVNWVHTIDR	IKIAKRLNEQRPI	DLPPLNIC	12
Query	123	IQVNISEEKTKSGVDLTNLSEFAKAVS +OVN+ EE +KSG+ L +SE A+AV+	QFDRLRLRGLMT	IPAYQKDFNAQKA IP O DF+AO+	TFEKLKEA TF +L++A	18
Sbjct	126	LÕVNLDEEASKSGISLNKISELAEAVI	'NMDQLKLRGLMT	IPKPQPDFSAQRK	TFARLRKA	18
Query	183	QQQLIKKGLPLDVLSLGMTHDFRAAIA O++LI +G LD LS+GMT D+ AAIA	AGSTMVRIGTGI	FGPR 225 FG R		
Sbjct	186	QEKLIAQGFALDTLSMGMTADYEAAIA	EGATIIRIGTAL	FGAR 228		

Vext Match 🔺 Previous Match

Figure 77: BLAST ninth match for BMW92_RS10835 sequence from organism *Thiotrichales bacterium* with an e-value of 2e-80, 50% identity, 73% positives, 0% gaps (dissimilarity), and an identity of pyridoxal phosphate-dependent enzyme (BLAST,

YggS family pyridoxal phosphate-dependent enzyme [Nitrosococcus oceani]

Sequence ID: <u>WP_002812025.1</u> Length: 231 Number of Matches: 1

See 5 more title(s)
See all Identical Proteins(IPG)

Range 1: 4 to 231 GenPept Graphics

Vext Match A Previous Match

-			-	-
Score	Expect Method	Identities	Positives	Gaps
249 bits(635)	6e-80 Compositional matrix adjust.	124/228(54%)	157/228(68%)	2/228(0%)
Query 3	ISENIKRITTEIRQAEKEFSRSPNAVS I++ + + T I OAE+ F R +VS	LLAVSKSQSLDKI	IKEAIAAGQRQFO	SENYLQEAL
Sbjct 4	IAQQLAEVYTRIAQAEQRFGRPKGSVS	LVAASKTCPVSA	IRAAVACGQRAF	GENYLQEAL
Query 63	VKIKALRAHPLEWHFIGVIQTNKTRLI	STNFDWVQSVSRI	LEVASELHHYRPI	ELPPLSIC
Sbjct 64	PKIKELETEGLEWHFIGPIQSNKTRDI	ATHFDWVHSVARI	LKIAQRLSQQRPI	PELAPLNVC
Query 123	IQVNISEEKTKSGVDLTNLSEFAKAVS +OVNIS E +KSG L+E A AV	QFDRLRLRGLMTI	IPAYQKDFNAQKA	TFEKLKEA
Sbjct 124	LQVNISGESSKSGTTAQELAELATAVV	EMPRLSLRGLMTI	LPALNSDLEAQRE	RPFRTLHQL
Query 183	QQQLIKKGLPLDVLSLGMTHDFRAAIA + L +KGL LD LS+GMT D AAIA	AGSTMVRIGTGI	FGPREDR 22 FG PR+DR	28
Sbjct 184	WEGLRQKGLTLDSLSMGMTDDLEAAIA	EGATLVRVGTAI	FGSRPRKDR 23	31

Figure 78: BLAST tenth match for BMW92_RS10835 sequence from organism *Nitrosococcus oceani* with an e-value of 6e-80, 54% identity, 68% positives, 0% gaps (dissimilarity), and an

identity of pyridoxal phosphate-dependent enzyme (BLAST,

Figure 79: BLAST graphic summary of the top 10 organism sequences similarities selected aligned with *Coxiella burnetii* query sequence of gene BMW92_RS10835. Each of the alignment sequences selected are order from highest sequence similarity (top) to lowest sequence similarity (bottom). All organism sequences aligned with the query sequence have an alignment score of greater than 200 (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

CDD

pyridoxal phosphate-binding protein (domain architecture ID 10160102) pyridoxal 5-phosphate (PLP)-dependent protein similar to the uncharacterized Escherichia coli YggS									
Graphical summary Zoom to residue level show extra options »	2								
pyridoxal 5 ⁷ -phosphate (PLP) binding site a catalytic residue									
Specific hits PLPOE_III_Y999_Like									
Yaa2									
Ala_racewase_N									
Non-specific TIGR00044									
Superfamilies PLPDE_III superfamily	PLPDE_III superfamily								
Search for similar domain architectures 2 Refine search 2									
List of domain hits									
Name Accession Description Interval	E-value								
H PLPDE_III_Yggs_like cd06824 Pyridoxal 5-phosphate (PLP)-binding TIM barrel domain of Type III PLP-Dependent Enzymes, 2-224	2.89e-132								
H YggS COG0325 Uncharacterized pyridoxal phosphate-containing protein, affects Ilv metabolism, UPF0001 family 1-226	5.50e-92								
H TIGR00044 TIGR00044 pyridoxal phosphate enzyme, YggS family; Members of this protein family include YggS from 2-225	1.16e-71								
H Ala_racemase_N ptam01168 Alanine racemase, N-terminal domain; 3-225	5.43e-20								

Figure 80: Conserved Domain Database output results for gene BMW92_RS10835. The top domain hit match was PLDE_III_Yggs_like: pyridoxal phosphate-dependent enzyme which aligned with the query sequence from amino acid residues 2-224 and had statistically significant e-value of 2.89e-132. The second domain hit match was YggS: pyridoxal phosphate-dependent enzyme which aligned with the query sequence from amino acid residues 1-226 and had a statistically significant e-value of 5.50e-92. The third domain hit match was TIGR00044: pyridoxal phosphate-dependent enzyme which aligned with the query which aligned with the query sequence from amino acid residues 2-225 and had a statistically significant e-value of 1.16e-71. The fourth domain hit match was Ala_racemase_N: pyridoxal phosphate-dependent enzyme which aligned with the query sequence from amino acid residues 3-225 and had a statistically significant e-value of 5.43e-20 (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).
			Pssm	-ID : 143497	Cd Length: 2	24 Bit Score:	371.14 E-v	alue: 2.89e-1	132
		10	20	30	40	50	60	70	80
		*		*	*	*	*	*	.*
Query_15080	2	SISENIKRITTEIRC	AEKEFSRSE	NAVSLLAVSK	SQSLDKIKEA	IAAGQRQFGE	NYLQEALVKI	KALRA-HPL	EWHFIGV 80
Cdd:cd06824	1	NIAENLAQVKQRIA	AAKQAGRDE	SSVQLLAVSK	TKPADAIREA	YAAGQRHFGEI	NYVQEALEKI	EALRDIQDI	EWHFIGP 80
Query_15080 Cdd:cd06824	81 81	90 *	100 VQSVSRLEV WHSVDRLKI	110 * ASELHHYRPL	120 * ELPPLSICIQ GLPPLNVCIQ	130 * VNISEEKTKS VNISGEDSKS	140 * GVDLTNLSEF GVAPEDAAEI	150 * AKAVSQFDR AEAISQLPN	160 .* LRLRGLM 160 LRLRGLM 160
Query_15080 Cdd:cd06824	161 161	170 *	180 FEKLKEAQQ FKRLRQLFE	190 * QLIKKGLPLD QLKKQYPDLD	200 * VLSLGMTHDF TLSMGMSGDL	210 * RAAIAAGSTM EAAIAAGSTM	220 * VRIGTGIFGF VRIGTAIFGF	224 224	

Figure 81: The top domain hit sequence PLDE_III_Yggs_like: Pyridoxal 5-phosphate (PLP)binding TIM barrel domain of Type III PLD-Dependent Enzyme aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 2-224 and had a statistically significant e-value of 2.89e-132 (BLAST,

Figure 82: The second domain hit sequence YggS: pyridoxal phosphate-dependent enzyme aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 1-226 and had a statistically significant e-value of 5.50e-92 (BLAST,

			Pssm-ID: 129	155 [Multi-don	nain] Cd Len	gth: 229 Bit	Score: 217.79	E-value: 1	.16e-71
		10	20	30	40	50	60	70	80
Query_15080	2	SISENIKRITTE	IRQAEKEFSRS	.* PNAVSLLAVSI	.* SQSLDKIKE	.* AIAAGQRQFGI	.* ENYLQEALVK	.* IKALRAHP-I	.* EWHFIGV 80
Cdd:TIGR00044	3	DIIHYLEDIKTK	IEAANTHVNRN	PSKVKLLAVSI	TKPASAIQI	AYDAGQRAFGI	ENYVQELVEK	IKLLEDLGkL	EWHFIGP 82
		90	100	110	120	130	140	150	160
		*	*	.*	*	.*	.*	.*	.*
Query_15080	81	IQTNKTRLISTN	IFDWVQSVSRLE	VASELHHYRPI	LELPPLSICI	QVNISEEKTK:	SGVDLTNLSE	FAKAVSQFDR	LRLRGLM 160
Cdd:TIGR00044	83	LQSNKDRLVVEN	FDWVHTIDSLK	IAKKLNEQRE	KLQPPLNVLL	QINISDEESK:	SGIQPEELLE	LAIQIEELKH	LKLRGLM 162
		170	180	190	200	210	220		
		*	*	• * • • • • • • • •	*••••	•*••••	• * • • • • • • • •	.*	
Query_15080	161	TIPAYQKDFNAQ	KATFEKLKEAQ	QQlIKKGLPL-	DVLSLGM	THDFRAAIAA	GSTMVRIGTG	IFGPR 225	
Cdd:TIGR00044	163	TIGAPTDSHEDQ	EENFRFMKLLF	WQ-IKQDSPF	gti DTLSMGM	SDDFEEAIAA	GATMVRIGTA	IFGAR 229	

Figure 83: The third domain hit sequence TIGR00044: pyridoxal phosphate-dependent enzyme aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 2-225 and had a statistically significant e-value of 1.16e-71 (BLAST, https://blast.ncbi.nlm.nih.gov/Blast.cgi).

			Pssm-ID: 376	473 [Multi-don	nain] Cd Len	gth: 218 Bit	Score: 84.19	E-value: 5.4	3e-20
		10	20	30	40	50	60	70	80
		*	.*	.*	* • • • • • • • •	*	• * • • • • • • • •	*	*
Query_15080	3	ISENIKRItteiR	QaekefsRSP	NAVSLLAVSKS	QSLDF	KIKEAI <mark>AAG</mark> Q	RQFGENYLQE#	LvkikALRAH	IPLEW 75
Cdd:pfam01168	6	LRHNLRRLR	RRAG	GAKLMAVVKA	DayghgAVEV	ARALAAGGA	DGFAVATLDE	LELREA	giTAPI 71
Query_15080 Cdd:pfam01168	76 72	90 *	100 .* ISTNfDWVQS AAEY-DLTPT	110 .* /SRLEVASELH /DSLEQLEALA	120 * Hyrplelppi Aaarrlgkpi	130 * SICIQVNIS RVHLKIDTG	140 .* EekTKSGVDLT MGRLGFTPE	150 * CNLSEFAKAVS EALALLAALA	160 * QFDRLR 155 ALPGLR 148
Query_15080 Cdd:pfam01168	156 149	170 + LRGLMTIPAY LVGLMTHFACade	180 .* -QKDFNAQKA pDDYTNAQLA	190 * FFEKLKeaqqQ RFREAAA	200 * LIKKGLPLDV ALEAGLRPPV	210 *···· /LSLGMTHDF	220 .* RAAIAAgSTMU LLHPLH-FDMU	230 * /RIGTGIFGPR /RPGIALYGLS	225

Figure 84: The fourth domain hit sequence Ala_racemase_N: Alanine racemase N-terminal domain aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 3-225 and had a statistically significant e-value of 5.43e-20 (BLAST,

MUSCLE

T.bacterium	MTATHICNQITKLRESIRQYEQQYGRTENSVRLLAVSKTQAIESIQEAIRCGQMDFGENY
C.burnetii	MSISENIKRITTEIROAEKEFSRSPNAVSLLAVSKSOSLDKIKEAIAAGOROFGENY
C.microplus	MSISTNIKNINOKIREAEKKYDRKPHSIILLAVSKSONINOLKAAITGGOVRFGENY
C.mudrowiae	MSIAKNIRNIEOKIREAEKKYGREHHSIILLAVSKSONIDKLKAAIAGGOTLFGENY
C.americanum	MNIKNIKKRIRAAEKKYGRKPNSVILLAVSKSQHIDKLKTAISEGQTCFGENY
C.sculptum	MTVSTNIKNIRKEIRAAERQYGRKPNSIILLAVSKSQATDKLKTAIFEGQTSFGENY
N.halophilus	MTQIAQQLAQVQTRIAEAEQRFGRPAGSVTLVAATKTCSVSAIRAAIACGQRAFGENY
N.watsonii	MAQIALQLAEIYTRIAQAERRFGRSEGSVSLVAASKTCPVSAIRAAVVGGQRAFGENY
N.oceani	MTQIAQQLAEVYTRIAQAEQRFGRPKGSVSLVAASKTCPVSAIRAAVACGQRAFGENY
G.bacterium	MISDALTTVRQRIAEAARQFARAPDSIQLLAVSKTRPVADIVTAIESGQRCFGESY
Beggiatoa	-MISDALTRIKKVRKRIAEAARQFARSPGSIRLLAVSKTRPVEDIVTAFNSGQTCFGENY
	: : * . : * :: *:*: : *. ** ***.*
T.bacterium	AQELAEKARVIGQEVVHWHFIGPIQSNKTKMLSETVNWVHTIDRIKIAKRLNEQRPTDLP
C.burnetii	LQEALVKIKALRAHPLEWHFIGVIQTNKTRLISTNFDWVQSVSRLEVASELHHYRPLELP
C.microplus	LQEALNKMVALQNPHLEWHFIGAIQVNKTRLIATHFNWVHSISRLKIAEQLNQYRTAKKS
C.mudrowiae	VKEAITKIAALQNLHLEWHFIGAIQVNKTRLIATHFEWVHSISRLKIAEQLNQYRTSEQS
C.americanum	VQEALIKMSALRNYALEWHFIGSIQTNKIPVIAAHFGWVHSVSKLKTAEKLNKYRIPELP
C.sculptum	VQEALPKMRDLHNYHLEWHFIGSIQSNKTRTIASHFSWVHSVSRLKIAEQLNKYRMSELS
N.halophilus	LQEALPKIKELESENLEWHFIGPIQSNKTRDIAAHFDWVHSVDRLKVAQRLNQQRPPELP
N.watsonii	LQEALPKIKELETEGLEWHFIGPIQSNKTRDIATHFDWVHSVARLKIAQRLSQQRPPELA
N.oceani	LQEALPKIKELETEGLEWHFIGPIQSNKTRDIATHFDWVHSVARLKIAQRLSQQRPPELA
G.bacterium	LQEAISKIGALRNYPLQWHFIGPLQSNKTRLIAEHFDWVQSLDNEKHAVRLNAQRPTHLP
Beggiatoa	LQEAVPKIDALRDYPLEWHFIGPLQSNKTRLIAENFDWVQSLDKLKHAQRLNAQRPENFP
	:* * : : **** :* ** :: . **::: . : * * * .
T.bacterium	PLNICLQVNLDEEASKSGISLNKISELAEAVTNMDQLKLRGLMTIPKPQPDFSAQRKTFA
C.burnetii	PLSICIQVNISEEKTKSGVDLTNLSEFAKAVSQFDRLRLRGLMTIPAYQKDFNAQKATFE
C.microplus	PLNICIQINISEEKNKSGISLPDLPRFVAVINQFKRLRLRGLMTIPAVKKDFNSQKHDFE
C.mudrowiae	PLNICIQINISEEKNKSGISLVDLPKFVAEINQFKRLRLRGLMTIPAFKKDFKAQKHDFE
C.americanum	PLNICIQVNVSMEESKNGISLVDLSKFATEISNFKRLRLRGVMAIPAYNLDFCAQKFNFE
C.sculptum	PLNICIQVNLSNEKNKSGINLTDLPKFAAEINNFERLRLRGIMAIPAYVGDFSAQKHEFE
N.halophilus	PLNVCLQVNISGEDSKSGTTPEELTELAKAVAEMPRLSLRGLMTLPPLNSDFEAQRQPFR
N.watsonii	PLNVCLQVNISGESSKSGTTTQELAELAAAVTEMPQLSLRGLMTLPALNSDFEAQRRPFR
N.oceani	PLNVCLQVNISGESSKSGTTAQELAELATAVVEMPRLSLRGLMTLPALNSDLEAQRRPFR
G.bacterium	PLNVCIQVNISNEPQKSGIRLTELPTLAQAIAELPRLRLRGLMALPAPCADFNQQRLPFR
Beggiatoa	PLNVCIQVNISEETQKSGVHLTDLPTLAQAIAELPRLRLRGLMALPTLCQDFEQQRIPFR
	.:*:*:*:. * *.* .:. : : : : * *:*::* *: *. *
T.bacterium	RLRKAQEKLIAQGFALDTLSMGMTADYEAAIAEGATIIRIGTALFGARR
C.burnetii	KLKEAQQQLIKKGLPLDVLSLGMTHDFRAAIAAGSTMVRIGTGIFGPREDR
C.microplus	KIKNAQQKLIEKGFLLDTLSMGMTHDFQAAIAAGSTMVRIGTGIFGPREDQSII
C.mudrowiae	KIKNAQQQLIEEGFLLDTLSMGMTHDFQAAIAAGSTMVRIGTGIFGPRD
C.americanum	KIKNAQQKLIKQGLSLDTLSMGMTHDFQAAIAAGSTMVRIGTGIFGSRDNLQQKFFYF
C.sculptum	KIKNTQKQLAKKGIVLDTLSMGMTHDFRAAIAAGSTMLRIGTGVFGLRN
N.halophilus	ATHOLWOFLBOCCLKLDTLSTCMTDDLFAATAFCATLVBVCAATFCBBPPKDA
N.watsonii	
	ALIQUEELRQKGFALDSISMGDDDLEAAIAEGATLVRVGAAIFGKRFFKDR
N.oceani	ALHQLWEELRQKGFALDSLSMGMTDDLEAAIAEGATLVRVGTAIFGSRPRKDR TLHQLWEGLRQKGFALDSLSMGMTDDLEAAIAEGATLVRVGTAIFGSRPRKDR
N.oceani G.bacterium	ALHQLWEELRQKGFALDSLSMGMTDDLEAAIAEGATLVRVGTAIFGSRPRKDR TLHQLWEGLRQKGLTLDSLSMGMTDDLEAAIAEGATLVRVGTAIFGSRPRKDR ALHTAYQQLQASGLALDTLSMGMTDDLAAAIAEGATLVRIGTAIFGERERG
N.oceanı G.bacterium Beggiatoa	ALHQLWEELRQKGFALDSLSMGMTDDLEAAIAEGATLVRVGTAIFGSRPRKDR TLHQLWEGLRQKGLTLDSLSMGMTDDLEAAIAEGATLVRVGTAIFGSRPRKDR ALHTAYQQLQASGLALDTLSMGMTNDLAAAIAEGATLVRIGTAIFGERERG ALRIAYLKLQESGLALDTLSMGMTGDMVAAIAEGATFVRIGTGIFGERVGK

Figure 85: MUSCLE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10835 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered randomly and are listed from top to bottom as followed: *T. bacterium, C. burnetii, C. microplus, C. mudrowiae, C. americanum, C. sculptum, N. halophilus, N. watsonii, N. oceani, G. bacterium, Begiatoa.* Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid (MUSCLE, ">https://www.ebi.ac.uk/Tools/msa/muscle/>).

T.bacterium 0.25808 N.halophilus 0.08266 N.watsonii 0.03458 N.oceani 0.03901 G.bacterium 0.11345 Beggiatoa 0.11562 C.burnetii 0.16887 C.microplus 0.07393 C.mudrowiae 0.06766 C.americanum 0.1282 C.sculptum 0.12406

Figure 86: MUSCLE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10835 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed:

T. bacterium, *N. halophilus*, *N. watsonii*, *N. oceani*, *G. bacterium*, *Begiatoa*, *C. burnetii*, *C. microplus*, *C. mudrowiae*, *C. americanum*, *C. sculptum*. The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (MUSCLE,

<https://www.ebi.ac.uk/Tools/msa/muscle/>).

Figure 87: MUSCLE multiple sequence alignment real phylogenetic tree for *Coxiella burnetii* gene BMW92_RS10835 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *T. bacterium, N. halophilus, N. watsonii, N. oceani, G. bacterium, Begiatoa, C. burnetii, C. microplus, C. mudrowiae, C. americanum, C. sculptum.* The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (MUSCLE,

<https://www.ebi.ac.uk/Tools/msa/muscle/>).

Figure 88: Sequence logo generated from the MUSCLE multiple sequence alignments of *Coxiella burnetii* gene BMW92_RS10835 and the top 10 organism sequences similarities selected. Amino acids are represented by single letter abbreviations and distinct colors for each

respective amino acid. The conservation of each amino acid among residue across similar sequences is represented by the height of each single letter abbreviation of the amino acid. (WebLogo, <https://weblogo.berkeley.edu/logo.cgi>).

T-COFFEE

Beggiatoa	MISDALTR	ткк	VRKR	IAEAA	RQI	ARSI	PGS	IR	LLA	VSF	TRE	VED		TAF
C.americanum	MN	IKN	IKKR	IRAAE	KKY	GRK	PNS	VII	LLA	VSF	SQE	IDK	LK.	TAI
C.burnetii	MSI-SEN	IKR	ITTE	IRQAE	KEE	SRSI	PNA	VS1	LLA	VSF	SQS	LDK	IK	EAI
C.microplus	MSI-STN	IKN	INQK	IREAE	KKY	DRKI	PHS	III	LLA	VSP	SQN	INÇ	LK	AAI
C.mudrowiae	MSI-AKN	IRN	IEQK	IREAE	KKY	GRE	HS	III	LLA	VSF	SQN	IDK	LK	AAI
C.sculptum	MTV-STN	IKN	IRKE	IRAAE	RQY	GRK	PNS	III	LLA	VSF	(SQ <mark>A</mark>	TDK	LK.	TAI
G.bacterium	MISDA	LTT	VRQR	IAEAA	RQE	'ARAI	PDS	IQI	LLA	VSF	TR	VAL	IV	TAI
N.halophilus	MTQI-AQQ	LAQ	VQTR	IAEAE	QRE	GRP	AGS	VTI	LVA	ATF	TCS	VSA	IR	AAI
N.oceani	MTQI-AQQ	LAE	VYTR	IAQAE	QRE	GRPI	KGS	VS1	LVA	ASF	(TCE	VSA	IR	AAV
N.watsonii	MAQI-ALQ	LAE	IYTR	IAQAE	RRE	GRS	GS	VS	LVA	ASF	KTCE	VSA	IR	AAV
T.bacterium	MTATHI-CNQ	ITK	LRES	IRQYE	QQY	GRT	INS	VR	LLA	VSF	(TQ <mark>A</mark>	IES	IQ	EAI
	*	:	:	*	:.:	*	:	: 3	* : *	• : *	* :		:	*.

Beggiatoa C.americanum C.burnetii C.microplus C.mudrowiae C.sculptum G.bacterium N.halophilus N.oceani N.watsonii T.bacterium **NSGOTCFGENYLOEAVPKIDALRDYPLEWHFIGPLOSNKTRLIAENFDWV** SEGQTCFGENYVQEALIKMSALRNYALEWHFIGSIQTNKIPVIAAHFGWV AAGOROFGENYLQEALVKIKALRAHPLEWHFIGVIQTNKTRLISTNFDWV TGGOVRFGENYLQEALNKMVALONPHLEWHFIGAIQVNKTRLIATHFNWV AGGOTLFGENYVKEAITKIAALONLHLEWHFIGAIQVNKTRLIATHFEWV **FEGOTSFGENYVOEALPKMRDLHNYHLEWHFIGSIOSNKTRTIASHFSWV** ESGQRCFGESYLQEAISKIGALRNYPLQWHFIGPLQSNKTRLIAEHFDWV ACGQRAFGENYLQEALPKIKELESENLEWHFIGPIQSNKTRDIAAHFDWV ACGORAFGENYLOEALPKIKELETEGLEWHFIGPIOSNKTRDIATHFDWV VGGORAFGENYLOEALPKIKELETEGLEWHFIGPIOSNKTRDIATHFDWV RCGQMDFGENYAQELAEKARVIGQEVVHWHFIGPIQSNKTKMLSETVNWV *** * ** ****** ** ** * * * : :: **

Beggiatoa
C.americanum
C.burnetii
C.microplus
C.mudrowiae
C.sculptum
G.bacterium
N.halophilus
N.oceani
N.watsonii
T.bacterium

QSLDKLKHAQRLNAQRPENFPPLNVCIQVNISEETQKSGVHLTDLPTLAQ HSVSKLKTAEKLNKYRIPELPPLNICIQVNVSMEESKNGISLVDLSKFAT QSVSRLEVASELHHYRPLELPPLSICIQVNISEEKTKSGVDLTNLSEFAK HSISRLKIAEQLNQYRTAKKSPLNICIQINISEEKNKSGISLPDLPRFVA HSISRLKIAEQLNQYRTSEQSPLNICIQINISEEKNKSGISLVDLPKFVA HSVSRLKIAEQLNKYRMSELSPLNICIQVNLSNEKNKSGINLTDLPKFAA QSLDNEKHAVRLNAQRPTHLPPLNVCIQVNISNEPQKSGIRLTELPTLAQ HSVDRLKVAQRLNQQRPPELPPLNVCLQVNISGEDSKSGTTPEELTELAK HSVARLKIAQRLSQQRPPELAPLNVCLQVNISGESSKSGTTAQELAELAT HSVARLKIAQRLSQQRPPELAPLNVCLQVNISGESSKSGTTQELAELAA HTIDRIKIAKRLNEQRPTDLPPLNICLQVNLDEEASKSGISLNKISELAE ::: . : * .* * . .**.:*:*:*: * *.*

Beggiatoa	AIAEL	PRLRI	RGL	MALP	TLCÇ	DFEÇ	QQRI	PFR	ALR	IAYI	KLQ	ESG	LAI	DTL
C.americanum	EISNFI	KRLRI		MAIP	AYNI	DFC/	AQKF	NFE	KIK	N <mark>A</mark> QÇ	KLI	KQG	LSL	DTL
C.burnetii	AVSQF	DRLRI	RGL	MTIP.	AYQK	DFN/	AQKA	TFE	KLK	EAQÇ	QLI	KKG	LPL	DVL
C.microplus	VINQF	KRLRI	RGL	MTIP.	AVKK	DFNS	SQ <mark>K</mark> H	DFE	KIK	N <mark>A</mark> QÇ	KLI	EKG	FLL	DTL
C.mudrowiae	EINQFI	KRLRI	RGL	MTIP	AFKK	DFK/	A QKH	DFE	KIK	N <mark>A</mark> QÇ	QLI	EEG	FLL	DTL
C.sculptum	EINNFI	ERLRI	RGI	MAIP	AYVG	DFS	A QKH	EFE	KIK	NTQ <mark>k</mark>	QLA	KKG	IVL	DTL
G.bacterium	AIAEL	PRLRI	RGL	MALP	APCA	DFN	QQRL	PFR	ALH'	T <mark>A</mark> YÇ	QLQ.	ASG	LAI	DTL
N.halophilus	AVAEM	PRLSI	RGL	MTLP	PLNS	DFE/	AQRQ	PFR	ALH	QLWÇ	ELR	QGG	LKI	DTL
N.oceani	AVVEM	PRLSI	RGL	MTLP.	ALNS	DLE	AQRR	PFR	TLH(QLWE	GLR	Q <mark>K</mark> G	LTL	DSL
N.watsonii	AVTEM	PQLSI	RGL	MTLP.	ALNS	DFE/	AQRR	PFR	ALH	QLWE	ELR	Q <mark>K</mark> G	FAL	DSL
T.bacterium	AVTNM	DQLKI	RGL	MTIP	KPQF	DFS	AQRK	TFA	RLR	KAQE	KLI.	AQG	FAL	DTL
	: ::	:* *	***:	*::*		*:	*:	*	::		*	*	: *	* *
Beggiatoa	SMGMT	GDMV	AIA	EGAT	FVRI	GTG	IFGE	RVG	к					
Beggiatoa C.americanum	SMGMT SMGMT	GDMV# HDFQ#	AIA AIA	EGAT AGST	FVRI MVRI	GTG GTG	LFGE LFGS	RVG RDN	K LQQI	KFFY	F			
Beggiatoa C.americanum C.burnetii	SMGMT SMGMTI SLGMTI	GDMVI HDFQI HDFRI	AIA AIA AIA	EGAT AGST AGST	FVRI MVRI MVRI	GTG GTG GTG	LFGE LFGS LFGP	RVG RDN RED	K LQQ R	KFFY	F			
Beggiatoa C.americanum C.burnetii C.microplus	SMGMT(SMGMT) SLGMT) SMGMT)	GDMV/ HDFQ/ HDFR/ HDFQ/	AIA AIA AIA AIA	EGAT AGST AGST AGST	FVRI MVRI MVRI MVRI	GTG GTG GTG GTG	IFG <mark>E</mark> IFGS IFGP IFGP	RVG RDN RED RED	K LQQI R QSII	KFFY 	· ·F			
Beggiatoa C.americanum C.burnetii C.microplus C.mudrowiae	SMGMT(SMGMT) SLGMT) SMGMT) SMGMT)	GDMV# HDFQ# HDFR# HDFQ# HDFQ#	AIA AIA AIA AIA AIA	EGAT AGST AGST AGST	FVRI MVRI MVRI MVRI MVRI	GTG GTG GTG GTG GTG	LFGE LFGS LFGP LFGP LFGP	RVG RDN RED RED RD-	K LQQ R QSI	KFFY I	F			
Beggiatoa C.americanum C.burnetii C.microplus C.mudrowiae C.sculptum	SMGMT(SMGMT) SLGMT) SMGMT) SMGMT)	GDMVI HDFQI HDFRI HDFQI HDFQI HDFQI	AIA AIA AIA AIA AIA AIA	EGAT AGST AGST AGST AGST	FVRI MVRI MVRI MVRI MVRI MLRI	GTG GTG GTG GTG GTG GTG	IFGE IFGS IFGP IFGP IFGP /FGL	RVG RDN RED RED RD- RN-	K LQQ R QSI	KFFY I	F			
Beggiatoa C.americanum C.burnetii C.microplus C.mudrowiae C.sculptum G.bacterium	SMGMT SMGMT SLGMT SMGMT SMGMT SMGMT SMGMT	GDMV/ HDFQ/ HDFR/ HDFQ/ HDFQ/ HDFR/ NDLA/	AIA AIA AIA AIA AIA AIA AIA	EGAT AGST AGST AGST AGST AGST	FVRI MVRI MVRI MVRI MVRI MLRI LVRI	GTG GTG GTG GTG GTG GTG GTG	IFGE IFGS IFGP IFGP IFGL IFGE	RVG RDN RED RED RD- RN- RER	K LQQI QSI G	KFFY	 			
Beggiatoa C.americanum C.burnetii C.microplus C.mudrowiae C.sculptum G.bacterium N.halophilus	SMGMT SLGMT SLGMT SMGMT SMGMT SMGMT SLGMT	GDMV/ HDFQ/ HDFR/ HDFQ/ HDFQ/ HDFR/ NDLA/ DDLE/	AIA AIA AIA AIA AIA AIA AIA AIA	EGAT AGST AGST AGST AGST AGST EGAT	FVRI MVRI MVRI MVRI MLRI LVRI LVRI	GTG GTG GTG GTG GTG GTG GTG GTA	IFGE IFGS IFGP IFGP VFGL IFGE IFGE	RVG RDN RED RD- RN- RER RPP	K LQQ QSI G KDA	KFFY I	· · · · · · · · · · · · · · · · · · ·			
Beggiatoa C.americanum C.burnetii C.microplus C.mudrowiae C.sculptum G.bacterium N.halophilus N.oceani	SMGMTI SLGMTI SMGMTI SMGMTI SMGMTI SMGMTI SIGMTI	GDMVI HDFQI HDFQI HDFQI HDFQI HDFRI NDLAI DDLEI	AIA AIA AIA AIA AIA AIA AIA AIA AIA	EGAT AGST AGST AGST AGST AGST EGAT EGAT	FVRI MVRI MVRI MVRI MLRI LVRI LVRV LVRV	GTG GTG GTG GTG GTG GTG GTG GTA GTA	IFGE IFGP IFGP IFGP /FGL IFGE IFGR	RVG RDN RED RD- RN- RER RPP RPR	K LQQI R QSI G G K DA	KFFY I	 			
Beggiatoa C.americanum C.burnetii C.microplus C.mudrowiae C.sculptum G.bacterium N.halophilus N.oceani N.watsonii	SMGMTI SLGMTI SMGMTI SMGMTI SMGMTI SMGMTI SIGMTI SMGMTI	GDMVI HDFQI HDFQI HDFQI HDFQI HDFRI NDLAI DDLEI DDLEI	AIA AIA AIA AIA AIA AIA AIA AIA AIA AIA	EGAT AGST AGST AGST AGST EGAT EGAT EGAT EGAT	FVRI MVRI MVRI MVRI MVRI LVRI LVRV LVRV	GTG GTG GTG GTG GTG GTG GTA GTA GTA	IFGE IFGP IFGP IFGP VFGL IFGE IFGS IFGS	RVG RDN RED RD- RN- RER RPP RPR RPR	K LQQI R QSI G G K DR K DR K DR	KFFY I	· · · · · · · · · · · · · · · · · · ·			
Beggiatoa C.americanum C.burnetii C.microplus C.mudrowiae C.sculptum G.bacterium N.halophilus N.oceani N.watsonii T.bacterium	SMGMTO SLGMTO SLGMTO SMGMTO SMGMTO SMGMTO SMGMTO SMGMTO	GDMVI HDFQI HDFQI HDFQI HDFQI DDLEI DDLEI DDLEI ADYEI	AIA AIA AIA AIA AIA AIA AIA AIA AIA AIA	EGAT AGST AGST AGST AGST EGAT EGAT EGAT EGAT	FVRI MVRI MVRI MVRI MVRI LVRI LVRI LVRV LVRV	GTG GTG GTG GTG GTG GTG GTA GTA GTA GTA	IFGE IFGP IFGP VFGL IFGE IFGR IFGS IFGS	RVG RDN RED RD- RN- RER RPP RPR RPR RPR	K QSI: G KDA- KDR- KDR					

Figure 89: T-COFFEE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10835 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered randomly and are listed from top to bottom as followed: *Begiatoa, C. americanum, C. burnetii, C. microplus, C. mudrowiae, C. sculptum, G. bacterium, N. halophilus, N. oceani, N. watsonii, T. bacterium.* Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid (T-COFFEE, https://www.ebi.ac.uk/Tools/msa/tcoffee/).

Figure 90: T-COFFEE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10835 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *Beggiatoa, G. bacterium, N. halophilus, N. oceani, N. watsonii, T. bacterium, C. burnetii, C. mudrowiae, C. americanum, C. sculptum.* The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (T-COFFEE, https://www.ebi.ac.uk/Tools/msa/tcoffee/).

Figure 91: T-COFFEE multiple sequence alignment real phylogenetic tree for *Coxiella burnetii* gene BMW92_RS10835 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *Beggiatoa, G. bacterium, N. halophilus, N. oceani, N. watsonii, T. bacterium, C. burnetii, C. mudrowiae, C. americanum, C. sculptum.* The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (T-COFFEE, <https://www.ebi.ac.uk/Tools/msa/tcoffee/>).

Figure 92: Sequence logo generated from the T-COFFEE multiple sequence alignments of *Coxiella burnetii* gene BMW92_RS10835 and the top 10 organism sequences similarities

selected. Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid. The conservation of each amino acid among residue across similar sequences is represented by the height of each single letter abbreviation of the amino acid. (WebLogo, <https://weblogo.berkeley.edu/logo.cgi>).

Protein Localization

SignalP

SignalP-5.0 prediction (Gram-negative): Sequence

Figure 93: SignalP 5.0 prediction (Gram-negative) for gene BMW92_RS10835 of *Coxiella burnetii*. The SP (Sec/SPI), TAT (Tat/SPI), LIPO (Sec/SPII), and CS probability scores combined were all less than a total 2.0 (2%) which results in the likelihood of the protein being a signal peptide as highly unlikely and can confirm there is no signal peptide of these protein types. The program calculated the probability scores for OTHER as 0.986 (98.6%). This probability score indicates the protein from the gene BMW92_RS10835 has another protein classification that is not related to similar function or type as a signal peptide (SignalP, <http://www.cbs.dtu.dk/services/SignalP/>).

LipoP

```
# Sequence CYT score=-0.200913
# Cut-off=-3
Sequence LipoP1.0:Best CYT 1 1 -0.200913
# NO PLOT made - less than 4 putative cleavage sites predicted
```

Figure 94: LipoP 1.0 was unable to generate a plot graph due to there being less than four predicted putative cleavage sites. The best localization prediction resulted in the highest scoring class being the cytoplasmic protein class (LipoP, <http://www.cbs.dtu.dk/services/LipoP/>).

TMHMM

	# W # W # W # W WEE	VEBSEQUENCE VEBSEQUENCE VEBSEQUENCE VEBSEQUENCE VEBSEQUENCE 3SEQUENCE	Length: Number o Exp numb Exp numb Total pr TMHMM2	228 f predict er of AAs er, first ob of N-i .0	ed TMHs: in TMHs 60 AAs: n: outside	0 : 0.19731 0 0.13560 1	228
			TMHMM post	erior probabilities	s for WEBSEQ	UENCE	
	1.2		ſ	1	T		T
	1	-					-
Ī	0.8	_					
obabil	0.6	-					-
д	0.4	-					
	0.2	-					
	0		50	100	150	2	200
		transmem	brane ——	inside	,	outside —	

Figure 95: TMHMM posterior probability displayed a line graph that predicts the localization of the protein coded from BMW92_RS10835 as entirely outside the membrane. The red line, representative of the protein being located in the transmembrane, was less than 0.002 (0.20% probability) across the entirety of the line graph. This is indicative of the protein being located within the transmembrane as highly unlikely. The blue line, representative of the protein being located inside the membrane, was at 0.175 (17.55% probability). This is indicative of the protein being being located inside of the membrane as unlikely. The magenta line, representative of the protein being being located outside the membrane, was at 0.85 (85% probability). This is indicative of the

protein being located outside of the membrane as highly likely (TMHMM,

<http://www.cbs.dtu.dk/services/TMHMM/>).

BOMP

The total number of valid proteins submitted is: 1 The total number of integral β-barrel outer membrane proteins predicted is: 0

Sequence name Category Best BLAST hit

Figure 96: The BOMP test result identified there are no integral beta-barrel outer membrane proteins for gene BMW92_RS10835 (BOMP, http://services.cbu.uib.no/tools/bomp).

PSORTb

SeqID: C.burnetii			
Analysis Report:			
CMSVM-	Unknown		
CytoSVM-	Cytoplasmic		
ECSVM-	Unknown		
ModHMM-	Unknown		
Motif-	Unknown		
OMPMotif-	Unknown		
OMSVM-	Unknown		
PPSVM-	Unknown		
Profile-	Unknown		
SCL-BLAST-	Cytoplasmic		
SCL-BLASTe-	Unknown		
Signal-	Unknown		
Localization Scores:			
Cytoplasmic	9.97		
CytoplasmicMembrar	ne 0.01		
Periplasmic	0.01		
OuterMembrane	0.00		
Extracellular	0.00		
Final Prediction:			
Cytoplasmic	9.97		

[No details] [No details] [No details] [No internal helices found] [No motifs found] [No motifs found] [No details] [No details] [No matches to profiles found] [matched 15595591: Cytoplasmic protein] [No matches against database] [No signal peptide detected]

Figure 97: The PSORTb test resulted in an analysis report that identified no detectable internal helices, motifs, or signal peptides. The PSORTb localization scores resulted in a 9.97 value for the cytoplasmic location. The localization score for cytoplasmic membrane was 0.01. The localization score for periplasmic was 0.01. The localization score for the outer membrane location was 0.00. The localization score for the extracellular location was 0.00. The calculated localization scores for gene BMW92_RS10835 resulted in the final predictable location of the protein to be cytoplasmic (PSORTb, <https://www.psort.org/psortb/>).

Phobius

Figure 98: The Phobius posterior probability line graph generated for gene BMW92_RS10835 resulted in a calculated prediction that the whole sequence contains no membrane helices. The grey line, representative of the predicted transmembrane helices location, was around 0.06 (6%) posterior probability from amino acids 190-224. The green line, representative of the predicted cytoplasmic transmembrane helices location, was around 0.35 (35%) posterior probability from amino acids 200-

228. The blue line, representative of the predicted non-cytoplasmic transmembrane helices location, was around 0.64 (64%) posterior probability from amino acids 0-200; the posterior probability changed to 0.62 (62%) from amino acids 201-228. The red line, representative of the presence or absence of a signal peptide, was 0.00 (0%) posterior probability (Phobius, <hr/><hr/><http://phobius.sbc.su.se>).

BMW92_RS10840

The fourth gene, BMW92 RS10840, was analyzed using bioinformatic technology. Table 4 below contains the provided data regarding basic information. A protein isoelectric point calculator was used to determine the isoelectric point of the protein, protein length, and the number and prevalence of each amino acid that makes up the protein (Figure 99). The BLASTp search tool produced 100 matches ranked from highest sequence similarity to lowest sequence similarity. The top ten sequences with significant alignments that were not identical species to Coxiella burnetii were selected. The information recorded included the organism name, protein name, percent identity, precent positive, length of alignment match, e-values, and percent gap. The highest ranked match to the BMW92 RS10840 gene was phosphoenolpyruvate carboxykinase [Coxiella mudrowiae] (Figure 100). The remaining nine matches to the BMW92 RS10840 gene all had a function as phosphoenolpyruvate carboxykinase (Figures 101-109). The CDD identified five potential protein domains hits conserved (Figure 110). Five of the domain hits conserved and identified by the CDD belong to the PEPCK HprK superfamily (Figure 111). Specific domain hits involved the PEPCK ATP, PRK09344, and PckA. One domain hit conserved and identified as a non-specific domain hit was pckA. The protein classification identified by the CDD was phosphoenolpyruvate carboxykinase. Four of the domain hits sequences were aligned with the query sequence based off the amino acids that are highly conserved between both sequences (Figures 112-115). The MUSCLE program generated a multiple sequence alignment (MSA); each amino acid in the sequence was assigned a distinct color to distinguish the amino acids being compared (Figure 116). The MUSCLE program generated two phylogenetic trees using the multiple sequence alignments to further confirm sequence similarity. The results displayed the numbers followed behind each organism at the end of each leaf node which displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii*. The use of a phylogenetic cladogram (Figure 117) and real phylogenetic tree (Figure 118) provided further understanding of the relatedness of common ancestors and organism sequences that are conserved. Each of the letter's heights produced correspond to the conservation of the amino acid residue across similar sequences. WebLogo produced a sequence logo that was generated from the MUSCLE multiple sequence alignments of Coxiella burnetii gene BMW92 RS10840 and the top 10 organism sequences similarities selected (Figure 119). Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid. Each of the single letter amino acid abbreviation's heights correspond to the conservation of the amino acid residue across similar sequences. The T-COFEE program generated another multiple sequence alignment to further confirm sequence similarity depicted with in the MUSCLE MSA (Figure 120). The T-COFFEE program generated two phylogenetic trees, phylogenetic cladogram (Figure 121) and real phylogenetic tree (Figure 122), using the multiple sequence alignment which displayed the genetic proximity and similarity between Coxiella burnetii and selected organisms from the BLASTp search. WebLogo constructed a sequence logo from the T-COFFEE multiple sequence alignments of Coxiella burnetii gene BMW92 RS10840 and the top 10 organism sequences similarities selected to further display sequence similarity and conservation of sequences. Each of the single letter amino acid abbreviation's heights correspond to the conservation of the amino acid residue across similar sequences (Figure 123). Protein localization results included SignalP, LipoP, TMHMM, BOMP, PSORTb, and Phobius. The SignalP graphical illustration identified that there is no presence of a signal peptide for the entirety of the protein sequence (Figure 124). The LipoP resulted in the highest scoring class being the cytoplasmic protein class (Figure 125).

The TMHMM test resulted in a graphical illustration, statistics, and a list of the predicted transmembrane helices and the predicted location of the intervening loop regions. The TMHMM test resulted and displayed that the whole sequence is highly unlikely to contain any transmembrane helices and that the majority of the protein has a high probability of being located outside of the membrane (Figure 126). The BOMP test result identified there are no integral beta-barrel outer membrane proteins (Figure 127). The PSORTb test resulted in an analysis report that identified no detectable internal helices, motifs, or signal peptides; the localization scores calculated the predictable location of the protein to be cytoplasmic (Figure 128). The Phobius test resulted in a line graphical illustration that identified a low probability of transmembrane helices present; the overall result calculated by Phobius resulted in the entire protein sequence as non-cytoplasmic, which is contradictory to LipoP, TMHMM and PSORTb results (Figure 129).

Basic Information

Genome	Replicon	Locus Tag Old Locus Tag						
Coxiella burnetii	NZ_CP018005	BMW92_RS10840	BMW92_10470					
Genomic	Products	Length	Start and End					
Coordinates			Position					
19655881967141	phosphoenolpyruvate	1554 / 517	1965588 - 1967141					
	carboxykinase							
Molecular	Average	IPC Protein	Protein Length					
Weight	Isoelectric Point							
56807.48644 Da	5.82	5.60	519 amino acids					
Nucleotid	e Sequence	Amino A	cid Sequence					
atggagcaaattgctgcgcga	agttacctatattaacctttctcc	MEQIAARVTYINLSPD	ELIQHAVKNGEGVLSSTGAL					
tgatgagttgattcaacacgo	cgtaaaaaatggcgagggcgt	AVTTGKRTGRSPKDRF	IVKDEQTADQVAWGNINQ					
attaagttccaccggtgcttta	agcggttactactgggaaacgc	PVEQRTFDQLWERALF	RYLSERAVYISHLQVGADD					
acgggtcgatcgccgaaaga	tcgttttattgtcaaagatgagc	NYFLPLKVVTEFAWHNLFACDLFIRPSGDHANGKP						
aaaccgccgatcaagtggcg	tggggcaatatcaatcagcctg	SWVILSAPGLKTDPERI	DGVNSDGAVMINLSQRRV					
ttgagcaacgcacctttgacc	agttgtgggagcgagcgctgcg	LLVGMPYAGEMKKAN	1FSVLNYLLPPHDVLPMHC					
gtatctttctgaacgtgctgtt	tatatttcgcatttgcaagtagg	AANAGQSGDVALFFG	LSGTGKTTLSADPHRFLIGD					
ggcggatgataattattttctg	gccacttaaggtggtcaccgagt	DEHGWSATSVFNFEGGCYAKCIDLSQEREPMIWN						
ttgcgtggcacaatttatttgc	gtgtgatctttttatccgtccttc	AIRHGAIMENVVLDENGVPDYADARLTQNSRAAY						
tggtgatcatgcgaatgggaa	aaccgtcctgggttattttaagt	PREYIPLRVENNRGRPF	PDAVLFLTCDLDGVLPPVAL					
gcccccgggctgaaaactga	tcctgagcgagacggcgtgaat	LTKEQAAYYFLSGYTALVGSTEVGSVKGVTSTFSTC						
agtgatggtgcggtaatgatt	aatttatcacagcgccgtgtgtt	FGAPFFPRPPTVYAELLMKRIEATGCQVYLVNTGW						
attggtgggcatgccctatgc	gggtgaaatgaaaaaagccat	TGGAYGEGGERFSIPTTRAIVNAVLSGKLKEGPTEV						
gttttccgtgctgaattatctt	ttgccgccgcacgatgttttacc	LSGFNLTIPKSALGVDDHLLNPRKTWEDVSAYDAR						
gatgcattgcgccgctaatgc	tggccagtcgggcgatgttgca	AQRLIQKFRENFEKFKV	L AAIREAGPSDVH					
ctatttttcggattatcaggaa	acgggtaagaccaccttgtcggc							
tgaccctcatcgatttttaatc	ggtgacgacgaacacggttgg							
agcgccacaagcgtttttaat	tttgagggcgggtgttatgcca							
agtgcattgatttgtcacaag	aacgagagcccatgatttggaa							
tgcgattcggcacggcgctat	tatggaaaatgtggttttagat							
gagaatggcgttcccgattat	gcggatgcgcggctaacccaa							
aattcgcgtgccgcttatccg	cgcgagtatattccgttgcgggt							
ggaaaataatagagggcgcc	cccccgatgccgtcttatttcta							
acttgcgatctcgatggtgttt	tgccgcccgtggcactgctcac							
gaaagaacaagcggcttatt	attttttaagcgggtataccgct							
ttagtgggcagcacggaagt	gggcagcgtaaagggcgtcac							

 Table 4: Gene BMW92_RS10840 basic information

ctccaccttcagtacttgctttggcgcacccttttttccacgccc	
tccgactgtctatgctgaattattaatgaaacgtattgaagca	
acgagcgattgttaacgctgttctaagcggaaaactcaaaga	
gggaccaacagaagtgttgagcggctttaatctcaccattcca	
aaatcggctttaggtgtggacgatcatttattaaatccccgga	
agarttgggaagatgttagrgrrtargatgrgrgagrrag	
agttaattcaaaaattccgtgaaaattttgaaaaatttaaagt	
acttactaccattcagaaagccgaaccatctgatatccattag	
SerigergeraticsSeaagergeacestergargreeating	

Figure 99: Protein isoelectric point calculator. The number and prevalence of each amino acid in the protein coded from the BMW92_RS10840 gene of *Coxiella burnetii* (Kozlowski, Biology Direct, <<u>http://isoelectric.org/></u>).

Sequence Similarity

BLAST

phosphoenolpyruvate carboxykinase [Candidatus Coxiella mudrowiae]

Sequence ID: WP_048875732.1 Length: 516 Number of Matches: 1

<u>See 1 more title(s)</u> **See all Identical Proteins(IPG)**

Range	1:	1	to	513	<u>GenPept</u>	Graphics
-------	----	---	----	-----	----------------	----------

Vext Match 🔺 Previou

Score 875 hits	(2261)	Expect	Method	al matrix adiı	Identitie	es 3(81%)	Positives	88%)	Gaps 0/513(0%)	-
075 5105	(2201)	0.0	composition		JSCI 111/51	5(0170)	100/010(00 /0)	0/010(070)	-
Query	1	MEQIAZ M+OIA-	ARVTYINLSPI	DELIQHAVKNO	GEGVLSSTO		GKRTGRSP	KDRFI KDRFI	VKDEQTA	60
Sbjct	1	MDQIA	SRTVYTDLSVI	DELIQQALKKO	GEGKLSSTG	ALAVTT(GKRTGRSP	KDRFI	VKDAETA	60
Query	61	DQVAW	GNINQPVEQR	TFDQLWERALI	XYLSERAVY	ISHLQV	GADDNYFL GAD+NYFL	PLKVV P++V+	TEFAWHN	120
Sbjct	61	DQVQW	GNVNQSIVQG	VFDQLWNRANA	AYLSKRPMY	VSHLQV	GADENYFL	PVQVI	TEFGWHN	120
Query	121	LFACD	LFIRPSGDHAN	NGKPSWVILS	APGLKTDPE	RDGVNS	DGAVMINL	SORRV	LLVGMPY	180
Sbjct	121	LFACD	LFIRPDGDYA	KGKPEWIILS	PGLKIDPE /PGLKTDPE	RDKVNS	DAAVIINL	SQRRV	LLVGMAY	180
Query	181	AGEMKI	KAMFSVLNYL	LPPHDVLPMH(CAANAGQSG	DVALFF	GLSGTGKT	TLSAD	PHRFLIG	240
Sbjct	181	AGEIKI	KAMFTVLNYL	LPPHDVLPMHC	CAANAG+SG	DVALFF(GLSGTGKT	TLSAD	PNRFLIG	240
Query	241	DDEHG	WSATSVFNFE	GGCYAKCIDL	SQEREPMIN	NAIRHG	AIMENVVL	DENGV	PDYADAR	300
Sbjct	241	DDEHG	WS T VFNFE	GGCYAKCIDL	SEREPMIN	EAIRHG	AIMENVVL	QADGQ	PDY +A PDYRNAS	300
Query	301	LTQNSI	RAAYPREYIP	LRVENNRGRPI	PDAVLFLTC	DLDGVL	PPVALLTK	EQAAY	YFLSGYT	360
Sbjct	301	LTQN+1	RAAYPREHIS	LRV++NRGRP1 LRVKDNRGRP1	PD+V+FLTC PDSVIFLTC	DLYGVL	PPVALLTK	EQAAY EQAAY	YFLSGYT	360
Query	361	ALVGS	FEVGSVKGVT:	STFSTCFGAPI	FPRPPTVY	AELLMK	RIEATGCO	VYLVN	TGWTGGA	420
Sbjct	361	ALVGS	TEVGSVKGVT TEVGSVKGVT	PTFSTCFGAPI	FPRPPTVY	AELLMK	RIE T CO RIEETOCO	VYLVN	TGWTGGA TGWTGGA	420
Query	421	YGEGGI	ERFSIPTTRA	IVNAVLSGKL	KEGPTEVLS	GFNLTI	PKSALGVD	DHLLN	PRKTWED	480
Sbjct	421	YGEGG	VRFSIPTTRA	I++A+L+ KL- IIDAILTRKLI	F PTE L RNQPTENLK	GFNL I. GFNLAI	PKSA GV+ PKSAPGVE	D +LN	IPR+ W D IPRQAWTD	480
Query	481	VSAYD	ARAQRLIQKF	RENFEKFKVL	AIREAGP	513				
Sbjct	481	V AYD VRAYD	+A LI+KF IKALTLIEKF	RENF KF+V RENFVKFQVTI	AI++AGP DAIQKAGP	513				

Figure 100: BLAST first match for BMW92_RS10840 sequence from organism *Coxiella mudrowiae* with an e-value of 0.0, 81% identity, 88% positives, 0% gaps, and an identity of phosphoenolpyruvate carboxykinase (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

phosphoenolpyruvate carboxykinase [Coxiella endosymbiont of Rhipicephalus microplus]

Sequence ID: <u>WP_102156648.1</u> Length: 516 Number of Matches: 1

See 1 more title(s)
See all Identical Proteins(IPG)

Range 1: 1 to 513 GenPept Graphics

Vext Match 🔺 Previous Ma

Score		Expect	Method		Identities	Positives	Gaps	_
824 bits	s(2129)	0.0	Compositiona	l matrix adjust	. 384/513(75%)	438/513(85%)	0/513(0%)	_
Query	1	MEQIAA MEOT +	RVTYINLSPD R Y +1.+ D	ELIQHAVKNGE	GVLSSTGALAVTI	GKRTGRSPKDRF	IVKDEQTA IVKD +T	60
Sbjct	1	MEQIVS	RTVYTDLAID	ELIQHALKKGE	GTLSVTGALAVRI	GKRTGRSPQDRF	IVKDSETE	60
Query	61	DQVAWG	NINQPVEQRT ++NOP+ O	FDQLWERALRYI FDOLW RA Y	LSERAVYISHLQV +S+R++Y+SHL+V	GADDNYFLPLKVV GAD+NY +P++V-	/TEFAWHN +TE AWHN	120
Sbjct	61	DQVQWG	DVNQPIVQVV	FDQLWNRATAY	ISKRSMYVSHLKV	GADENYSIPVQV	TELAWHN	120
Query	121	LFACDL	FIRPSGDHAN	GKPSWVILSAP	GLKTDPERDGVNS	DGAVMINLSORR	VLLVGMPY	180
Sbjct	121	LFACEL	FIRPDRDYFK	GKPKWILLSVP	GLTTDPKRDKVNS	DAAVIINLSORR	VLLVGMSY	180
Query	181	AGEMKK	AMFSVLNYLL	PPHDVLPMHCA	ANAGQSGDVALFF	GLSGTGKTTLSA	OPHRFLIG	240
Sbjct	181	AGEMKK	AMFTVLNYLL	PPQDVLPMHCA	ANTGKSGDVALFF	GLSGTGKTTLSA	DPNRFLIG	240
Query	241	DDEHGW	SATSVFNFEG	GCYAKCIDLSQ	EREPMIWNAIRHG	AIMENVVLDENG	VPDYADAR	300
Sbjct	241	DDEHGW	SRTGVFNFEG	GCYAKCIDLS	EREPIIWESIRY	AIMENVVL +G	2PAYNDAS	300
Query	301	LTQNSR.	AAYPREYIPL	RVENNRGRPPD	AVLFLTCDLDGVI	PPVALLTKEQAA	YYFLSGYT	360
Sbjct	301	LTQNTR.	AAYPREHILF	RVKENRGRPPD	AVIFLTCDLYGVI	PPVSLLTKAQAA	YYFLSGYT	360
Query	361	ALVGST	EVGSVKGVTS	TFSTCFGAPFF	PRPPTVYAELLMK	RIEATGCQVYLVI	NTGWTGGA	420
Sbjct	361	ALVGST	EVGSVKG+ EVGSVKGIVP	TFSSCFGAPFF	PRPPVYAKLLMK	RIEETQCQVYLVI	NTGWMGGA	420
Query	421	YGEGGE	RFSIPTTRAI	VNAVLSGKLKE	GPTEVLSGFNLTI	PKSALGVDDHLLI	NPRKTWED	480
Sbjct	421	YGEGG	RF IP TR+1 RFRIPITRSI	IDAILTRKLIN	OPTENLKGFNLAI	PQSVPGVEDKVLI	NPRK W D	480
Query	481	VSAYDA	RAQRLIQKFR	ENFEKFKVLAA	IREAGP 513			
Sbjct	481	+ AYD LKAYDI	+A LI+KF+ KAFSLIEKFQ	ENF KF+V A. ENFVKFQVTEA	IREAGP			

Figure 101: BLAST second match for BMW92 RS10840 sequence from organism

Rhipicephalus microplus with an e-value of 0.0, 75% identity, 85% positives, 0% gaps, and an

identity of phosphoenolpyruvate carboxykinase (BLAST,

phosphoenolpyruvate carboxykinase (ATP) [Legionellales bacterium]

Sequence ID: MBB71107.1 Length: 516 Number of Matches: 1

Range 1: 4 to 515 GenPept Graphics

Vext Match 🔺 Previou

Score		Expect	Method			Identit	ies	Positive	S	Gaps	_
733 bits	s(1893)	0.0	Composition	nal matrix a	djust.	342/5	12(67%)	410/51	.2(80%)	0/512(0%)	_
Query	2	EQIAAI E A	RVTYINLSPD +TY +LS +	ELIQHAVKN	IGEGVI EGVI	LSSTG	ALAVTTG	KRTGRS	PKDRFI	/KDEQTAD /+D+ T +	61
Sbjct	4	ETKAE	IMTYTDLSTE	QLIKHALEF	RNEGVI	LSTNQ	ALSVATG	TRTGRS	PRDRFI	VQDDVTTN	63
Query	62	QVAWGI	NINQPVEQRT	FDQLWERAL	LRYLSI	ERAVY	ISHLQVG	ADDNYF	LPLKVV	TEFAWHNL	121
Sbjct	64	TVDWGI	NVNQPISQDR	FDALWNQIE	EAYLAI	DKDTF	VSHLEVG	ADSEHY	LPVKVII	NQKAWHNL	123
Query	122	FACDLI	FIRPSGDHAN	GKPSWVILS	SAPGLI	KTDPE	RDGVNSD	GAVMIN	LSQRRVI	LLVGMPYA	181
Sbjct	124	F TRNL	FIRPDTYNRK	QKPEWTILS	SAPDFI	HASPE	RDG NS+ RDGTNSE	AAVILN	FSQRRI	LVCGTHYA	183
Query	182	GEMKK	AMFSVLNYLL	PPHDVLPMH	ICAAN	AGQSG	DVALFFG	LSGTGK	TTLSAD	PHRFLIGD	241
Sbjct	184	GEMKKA	AMFTVMNFLL	PNIDVLPME	ICA+N ICASN:	IGMEG	DVALFFG	LSGIGK	TTLSAD	PERFLIGD	243
Query	242	DEHGW	SATSVFNFEG	GCYAKCIDI	SQERI	EPMIW	NAIRHGA	IMENVV	LDENGVI	PDYADARL	301
Sbjct	244	DEHGW	GKSGVFNFEG	GCYAKCIDI	SKEKI	EPVIW	DAIRHGA	IMENVV	LDENQA	PDI+D+ L PDYSDSTL	303
Query	302	TONSR	AAYPREYIPI	RVENNRGRE	PDAV	LFLTC	DLDGVLP	PVALLT	KEQAAY	YFLSGYTA	361
Sbjct	304	SMNSR	AAYPREHIEM	IRAEANRGGQ	PDAVI (PDAVI	LFLTC	DLYGVLP	PV+LL+ PVSLLS	KEQAAYI	HFLSGITA	363
Query	362	LVGST	EVGSVKGVTS	TFSTCFGAP	PFFPRI	PPTVY	AELLMKR	IEATGC	QVYLVN	FGWTGGAY	421
Sbjct	364	LVGSTI	EVGQTEGIKP	TFSTCFGAP	PFFPL	SPSVY	AELL+KR AELLIKR	IE IG IEETGA	QVYLVN	IGWIGGAI IGWIGGAY	423
Query	422	GEGGEI	RFSIPTTRAI	VNAVLSGKI	KEGP	TEVLS	GFNLTIP	KSALGV	DDHLLNI	PRKTWEDV	481
Sbjct	424	GPGGEI	RFSIPTTRAI	VRAILSG I	KDAN	L L LITLP	GFNL IP GFNLAIP	FF GV ETINGV	DSQLLN	PVKTWSDS	483
Query	482	SAYDA	RAQRLIQKFR	ENFEKFKVI	LAAIRI	EAGP	513				
Sbjct	484	TAYEA	т L ++FR KLMELSEOFF	ENFKRFDVA	- T APEIVI	KAGP	515				

Figure 102: BLAST third match for BMW92_RS10840 sequence from organism *Legionellales bacterium* with an e-value of 0.0, 67% identity, 80% positives, 0% gaps, and an identity of

 $phosphoenolpyruvate\ carboxykinase\ (BLAST, < https:/blast.ncbi.nlm.nih.gov/Blast.cgi>).$

phosphoenolpyruvate carboxykinase [Aquicella lusitana]

Sequence ID: <u>WP_114834947.1</u> Length: 524 Number of Matches: 1

See 2 more title(s) See all Identical Proteins(IPG)

Range 1: 15 to 522 GenPept Graphics

Vext Match 🔺 Previou

												-
Score	(1045)	Expect	Method		بل م الأرب م	Identit	ies	Positive	S	Gaps		
/15 DIts	(1845)	0.0	Composition	iai matri	x adjust.	346/5	08(68%)	404/50	18(79%)	3/508((0%)	-
Query	10	YINLSP +TNLS	DELIQHAVK +EL++ A+	NGEGVL	SSTGALA	VTTGK	RTGRSPK	DRFIVK DRFIV+	DEQTAD	QVAWGN	IN	69
Sbjct	15	HINLSA	EELVEIALA	RGEGEL	ASNQALV	VKTGA	RTGRSPK	DRFIVR	DEITEN	QVDWNT	IN	74
Query	70	QPVEQR	TFDQLWERA F+ LW++A	LRYLSE	R-AVYIS	SHLQVG	ADDNYFL A + +	PLKVVT P+KV+T	EFAWHNI E AWHNI	LFACDL	FI FT	128
Sbjct	75	QPISPE	KFNALWQKA	QDYLDT	RDAHFIS	SFLKVG	AHEELGV	PVKVIT	ELAWHN	LFARVL	FI	134
Query	129	RPSGDH.	ANGKPS-WV	ILSAPG	LKTDPEF	RDGVNS	DGAVMIN	LSQRRV	LLVGMP	YAGEMK	KA	187
Sbjct	135	RPEKPA	TTVVPNQWI	ILSVPG	FKTDPAF	RDGVNG	DAAVILN	FSQRRI	LICGTH	YAGEMK	KA	194
Query	188	MFSVLN	YLLPPHDVL	PMHCAA	NAGQSGI	VALFF	GLSGTGK	TTLSAD	PHRFLI	GDDEHG	WS	247
Sbjct	195	MFSVLN	FILPEHNIL	PMHCAA	NAGENGI	TALFF	GLSGTGK	TTLSAD	PERFLI	GDDEHG	WG	254
Query	248	ATSVEN	FEGGCYAKC	IDLSQE	REPMIWN	AIRHG	AIMENVV	LDE-NG	VPDYAD	ARLTQN	SR	306
Sbjct	255	NDGVFN	FEGGCYAKC	IDLSEE	REPLINE	AIR+G AIRYG	SVIENVV	LDPVTK	NPDYGD	ASLTQN	TR	314
Query	307	AAYPRE	YIPLRVENN	RGRPPD	AVLFLTC	DLDGV	LPPVALL	TKEQAA	YYFLSG	YTALVG	ST	366
Sbjct	315	AAYPRE	FIPQRVENN	RGRQPN	AVLFLTC	DLYGV	LPPVARL	TPEQAA	YYFLSG	YTALVG	ST	374
Query	367	EVGSVK	GVTSTFSTC	FGAPFF	PRPPTVY	AELLM	KRIEATG	CQVYLV	NTGWTG(GAYGEG	GE	426
Sbjct	375	EVGQGS	GIKPTFSTC	FGAPFF	PRPPRVI	AELLM	KRLQNFD	TQVILV	NTGWSG	GAHGEG	GK	434
Query	427	RFSIPT	TRAIVNAVI	SGKLKE	GPTEVLS	GFNLT	IPKSALG	VDDHLL	NPRKTW	EDVSAY	DA	486
Sbjct	435	RFSIPT	TRA+V A++ TRAVVTAIV	NGKLKD	E L AEYEKLI	GFN GFNFD	IPK+ G IPKAVDG	V+ LL VESKLL	NPRKTW	D +A+ NDTAAH	DK	494
Query	487	RAQRLI	QKFRENFEK	FKVLAA	IREAGPS	514						
Sbjct	495	A+ LI YARILI	++F ENF++ EQFIENFKR	F V A	IRNAGPS	522						

Figure 103: BLAST fourth match for BMW92_RS10840 sequence from organism Aquicella

lusitana with an e-value of 0.0, 68% identity, 79% positives, 0% gaps, and an identity of

phosphoenolpyruvate carboxykinase (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).
phosphoenolpyruvate carboxykinase [Coxiellaceae bacterium]

Sequence ID: <u>QLH44014.1</u> Length: 514 Number of Matches: 1

Range 1: 8 to 514 GenPept Graphics

Vext Match 🔺 Previou

Score 692 bits	(1786)	Expect	Method Compositior	nal matrix a	djust.	Identities 330/508	8(65%)	Positives 404/508	(79%)	Gaps 3/508(0%)	_
Query	10	YINLSI	PDELIQHAVK	NGEGVLSSI	GALA	VTTGKRT V TGKRT	GRSPKI	ORFIVKD	EQTADÇ E TAD	QVAWGNIN V WGN+N	69
Sbjct	8	HVDLS	/AELIEMALE	REEGVLSAN	IQALV	VATGKRT	GRSPKI	DRFIVKD	ELTAD	TVDWGNVN	67
Query	70	QPVEQE	RTFDQLWERA F LW+RA	LRYLSERAV	/YISH	LQVGADD	NYFLPI +F+P-	LKVVTEF	AWHNLI AWHN+I	FACDLFIR	129
Sbjct	68	QPFDP <i>I</i>	AKFTVLWQRA	EQYMADQEV	/FVSH	LGVGADI	EHFVP	VTVISEY	AWHNVI	FVHDLFIR	127
Query	130	PSGDHA	ANGKPSWVIL	SAPGLKTDP	PERDG	VNSDGAV	MINLS	QRRVLLV	GMPYAC	GEMKKAMF	189
Sbjct	128	P+G + PNGRYI	PHGRAGWTIL	NAAGLPTDP	PARDG	TNSEATL	ILNFK	EKKILLC	GLRYAC	GEMXKAMF	187
Query	190	SVLNYI		HCAANAGQS	GDVA	LFFGLSG	TGKTT	LSADPHR	FLIGDI	DEHGWSAT	249
Sbjct	188	SVLNF1	LPEKNVLPM	HCAAN G+	GDVA QGDVA	LFFGLSG	TGKTT	LSADP R	YLIGDI	DEHGWSDH	247
Query	250	SVFNFI	EGGCYAKCID	LSQEREPMI		RHGAIME	NVVLD	-ENGVPD	YADARI	LTQNSRAA	308
Sbjct	248	GVFNFI	EGGCYAKCIN	LSKEREPVI	WDAI	RYGAIME	NVVLD	PKTKEPL	YGDASI	LTENTRAA	307
Query	309	YPREYI VP F+1	IPLRVENNRG	RPPDAVLFI	TCDL	DGVLPPV	ALLTKI	EQAAYYF:	LSGYTA	ALVGSTEV	368
Sbjct	308	YPLEH]	LAMRVPENQA	GHPQAVIFI	TCDL	YGVLPPV	AILNKI	EQAAYHF:	LSGYTA	ALVGSTEV	367
Query	369	GSVKG		APFFPRPPI	VYAE	LLMKRIE	ATGCO	VYLVNTG	WTGGAY	GEGGERF	428
Sbjct	368	GS GSTAG	IKSTFSTCFG	APFFPRPAQ	VIA+	LLIKRLT	ETGAQ	VILVNIG	WIGG	GE-GKRF	426
Query	429	SIPTT	RAIVNAVLSG	KLKEGPTEV	LSGF	NLTIPKS	ALGVDI	DHLLNPR	KTWED	/SAYDARA	488
Sbjct	427	DIPTT	RAVIRAILTG	KLKHVPTEV	/HPGF	NL IPK NLVIPKE	VPDVE	TRLLNPI	TW + NTWNNH	HQAYQASM	486
Query	489	QRLIQ	KFRENFEKFK	-VLAAIREA	AGPSD	515					
Sbjct	487	+ L+ H KELMDH	KF ENF KFK KFTENFXKFK	HVSEAIRKA	AGP++ AGPTE	514					

Figure 104: BLAST fifth match for BMW92_RS10840 sequence from organism *Coxiellaceae bacterium* with an e-value of 0.0, 65% identity, 79% positives, 0% gaps, and an identity of phosphoenolpyruvate carboxykinase (BLAST, <https:/blast.ncbi.nlm.nih.gov/Blast.cgi>).

phosphoenolpyruvate carboxykinase [Pseudospirillum japonicum]

Sequence ID: WP_093308432.1 Length: 520 Number of Matches: 1

See 1 more title(s) See all Identical Proteins(IPG)

Range 1: 11 to 516 GenPept Graphics

Vext Match 🔺 Previou

Score 691 bits	(1782)	ExpectMethodIdentitiesPositivesGaps0.0Compositional matrix adjust.327/506(65%)391/506(77%)1/506(0%)
Query	9	YINLSPDELIQHAVKNGEGVLSSTGALAVTTGKRTGRSPKDRFIVKDEQTADQVAWGNI 68
Sbjct	11	TY NLS +LI+ A++ GEG L+ GAL V TG+RTGRSP DRFIV + T+D + WG+1 TYTNLSNAQLIELAIQRGEGTLADNGALVVATGQRTGRSPMDRFIVNEPSTSDAIDWGSI 70
Query	69	QPVEQRTFDQLWERALRYLSERAVYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFI 128
Sbjct	71	IRPFSAEKFDALWERVEEYLSKQDTFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFV 130
Query	129	RPSGDHANGKPSWVILSAPGLKTDPERDGVNSDGAVMINLSORRVLLVGMPYAGEMKKAM 188
Sbjct	131	RPEGYNPKSKGEWQILNAPNFVCEPSRDGTNSDGCVILNFAKRKVLLAGMKYAGEMKKAM 190
Query	189	SVLNYLLPPHDVLPMHCAANAGQSGDVALFFGLSGTGKTTLSADPHRFLIGDDEHGWSA 248
Sbjct	191	SV N+LLP DVLPMHC+AN G+ G+ LFFGLSGTGKTTLSADP R+LIGDDEHGW PSVQNFLLPEKDVLPMHCSANVGEDGETTLFFGLSGTGKTTLSADPSRYLIGDDEHGWGK 250
Query	249	SVFNFEGGCYAKCIDLSQEREPMIWNAIRHGAIMENVVLDENGVPDYADARLTQNSRAA 308
Sbjct	251	TVFN EGGCIARCIDLS E EPTIWNAIR GATTENVILDE VPDI D LIQNSRAA STVFNIEGGCYARCIDLSAENEPVIWNAIRFGAVLENVILDERRVPDYNDDSLTQNSRAA 310
Query	309	PREYIPLRVENNRGRPPDAVLFLTCDLDGVLPPVALLTKEQAAYYFLSGYTALVGSTEV 368
Sbjct	311	PLEHIEKRVLENRAGEPSAIVFLTCDMSGVLPPVSILSKEAAAYHFLSGITA VGSTEF 370
Query	369	SVKGVTSTFSTCFGAPFFPRPPTVYAELLMKRIEATGCQVYLVNTGWTGGAYGEGGERF 428
Sbjct	371	SSSGLEATFSTCFGAPFFPRPAHVYADLLIKRIEEFGSQVYLVNTGWTGGAIG+GG RF SSSSGLEATFSTCFGAPFFPRPAHVYADLLIKRIEEFGSQVYLVNTGWTGGAYGQGGNRF 430
Query	429	SIPTTRAIVNAVLSGKLKEGPTEVLSGFNLTIPKSALGVDDHLLNPRKTWEDVSAYDARA 488
Sbjct	431	SIPTTRAI+NAV +G LK+ E L G NL++PK GV+D LLNPR TWED +AYDA+A SIPTTRAIINAVQTGVLKDAEIEQLPGLNLSVPKHIPGVEDRLLNPRNTWEDTAAYDAQA 490
Query	489	RLIQKFRENFEKFK-VLAAIREAGP 513
Sbjct	491	RLF FF ENFERFEV AI EAGP ARLVAQFVENFKKFQGVDEAIIEAGP 516

Figure 105: BLAST sixth match for BMW92_RS10840 sequence from organism

Pseudospirillum japonicum with an e-value of 0.0, 65% identity, 77% positives, 0% gaps, and an

identity of phosphoenolpyruvate carboxykinase (BLAST,

phosphoenolpyruvate carboxykinase [Aquicella siphonis]

Sequence ID: <u>WP_148337466.1</u> Length: 524 Number of Matches: 1

<u>See 1 more title(s)</u> **See all Identical Proteins(IPG)**

Range 1: 15 to 522 GenPept Graphics

Vext Match 🔺 Previou

-			
Score 689 hits	(1778)	Expect Method Identities Positives Gaps	
005 5103	(1770)		
Query	10	INLSPDELIQHAVKNGEGVLSSTGALAVTTGKRTGRSPKDRFIVKDEQTADQVAWGNIN 69	9
Sbjct	15	LNLSAKELVELALARGEGELASNQALVVKTGSRTGRSPKDRFIVRGQATETQVDWNQIN 74	4
Query	70	PVEQRTFDQLWERALRYL-SERAVYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFI 12	28
Sbjct	75	PISADKFEALWEKALHYLNSKDARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFI 13	34
Query	129	PSGDHANGKPS-WVILSAPGLKTDPERDGVNSDGAVMINLSQRRVLLVGMPYAGEMKKA 18	87
Sbjct	135	PVTPPTSDQPNQWTILSTPGFKTDPARDGVNSDAAVILDFEKHRILICGTYYAGEMKKA 19	94
Query	188	FSVLNYLLPPHDVLPMHCAANAGQSGDVALFFGLSGTGKTTLSADPHRFLIGDDEHGWS 24	47
Sbjct	195	FSVLNTTLP HDTLPMHCAANA T GD ALFFGLSGIGKIILSADP K LIGDDEHGW FSVLNFVLPQHDILPMHCAANASKEGDTALFFGLSGTGKTTLSADPKRLLIGDDEHGWG 25	54
Query	248	TSVFNFEGGCYAKCIDLSQEREPMIWNAIRHGAIMENVVLD-ENGVPDYADARLTQNSR 3(06
Sbjct	255	DGIFNFEGGCYAKCIDLS EREFFINNAIR G FFENVVLF F FDIADA HIGNER 31	14
Query	307	AYPREYIPLRVENNRGRPPDAVLFLTCDLDGVLPPVALLTKEQAAYYFLSGYTALVGST 36	66
Sbjct	315	AIPREFIP RVENNRGR P AVLFLICDL GVLPPVA LI EQAAIFLSGIIALVGSI AYPREFIPERVENNRGROPHAVLFLTCDLYGVLPPVARLTPEQAAYYFLSGYTALVGSI 37	74
Query	367	VGSVKGVTSTFSTCFGAPFFPRPPTVYAELLMKRIEATGCQVYLVNTGWTGGAYGEGGE 42	26
Sbjct	375	VG G+ TFSTCFGAPFFPRPP VIAELLMAR+ QVILVNTGWTGG++GEGG+ VGQGSGIKPTFSTCFGAPFFPRPPGVYAELLMKRLRNFDTQVYLVNTGWTGGSHGEGGK 43	34
Query	427	FSIPTTRAIVNAVLSGKLKEGPTEVLSGFNLTIPKSALGVDDHLLNPRKTWEDVSAYDA 48	86
Sbjct	435	FSIPTTR++V A++ G LK E L GFN+ IPK GVD LLNPRKTW++ +A+DA FSIPTTRSVVTAIVEGTLKNAEFETLPGFNIEIPKDVPGVDTRLLNPRKTWDNQAAHDA 49	94
Query	487	AQRLIQKFRENFEKFKVLAAIREAGPS 514	
Sbjct	495	A+ LI +F ENF++F V AIR AGP+ ARTLISQFIENFKRFNVSDAIRNAGPT 522	

Figure 106: BLAST seventh match for BMW92_RS10840 sequence from organism *Aquicella siphonis* with an e-value of 0.0, 66% identity, 77% positives, 0% gaps, and an identity of phosphoenolpyruvate carboxykinase (BLAST, <https:/blast.ncbi.nlm.nih.gov/Blast.cgi>).

phosphoenolpyruvate carboxykinase [Candidatus Rickettsiella isopodorum]

Sequence ID: WP_071662850.1 Length: 524 Number of Matches: 1

See 1 more title(s) See all Identical Proteins(IPG)

Range 1: 13 to 519 GenPept Graphics

Vext Match 🔺 Previou

Score 686 bits	s(1770)	Expect 0.0	Method Compositiona	al matrix adjust	Identities 322/507(64%)	Positives 402/507(79%)	Gaps 3/507(0%)	_
Query	10	YINLSP	DELIQHAVKN	GEGVLSSTGAL	AVTTGKRTGRSPK	DRFIVKDEQTAD	QVAWGNIN	69
Sbjct	13	FVDLSV	EELLNFAVER	KEGVIAANGAL	SVSTGKRTGRSPK	DFFIV + ++ DKFIVAEPKSEKI	DIDWDSIN	72
Query	70	QPVEQR	TFDQLWERAL	RYLSERAVYIS	HLQVGADDNYFLP	LKVVTEFAWHNLI	FACDLFIR	129
Sbjct	73	QALSEE	RFHALWQRAE	QYVKDADLFIS	NLQVGADPTYYLP	VKVITEYAWHNL	FARQLFIR	132
Query	130	PSGDHA	N-GKPSWVIL	SAPGLKTDPERI	OGVNSDGAVMINL	SQRRVLLVGMPY	AGEMKKAM	188
Sbjct	133	P + PDDFYG	KP W IL KVSKPEWTIL	SVPGLKTDP+RI	DGVNSD ++1+L DGVNSDATLVIHL	TERKVLLCGHRY	AGE+KKAM AGEIKKAM	192
Query	189	FSVLNY	LLPPHDVLPM	HCAANAGQSGD	VALFFGLSGTGKT	TLSADPHRFLIG	DEHGWSA	248
Sbjct	193	FSV+NY	LLPAVDVLPM	HCSANVGKEGD	VALFFGLSGTGKT	TLSADP RFLIG	DDEHAWSE	252
Query	249	TSVFNF	EGGCYAKCID	LSQEREPMIWN	AIRHGAIMENVVL	D-ENGVPDYADA	RLTQNSRA	307
Sbjct	253	TGVFNF	EGGCYAKCID	LSKEREPLIWN	AIRHGA+MENVVL AIRHGAVMENVVL	D E P+Y DAI DPETLDPNYKDAI	RLTQN+R RLTQNTRV	312
Query	308	AYPREY	IPLRVENNR-	GRPPDAVLFLT	CDLDGVLPPVALL	TKEQAAYYFLSG	YTALVGST	366
Sbjct	313	AYP + AYPLNF	I R NR IESRFRANRV	DRLPDAVIFLC	CDL GVLPP+A L CDLYGVLPPIACL	NHEQAAYYFLSG	YTALVGST	372
Query	367	EVGSVK	GVTSTFSTCF	GAPFFPRPPTV	YAELLMKRIEATG	CQVYLVNTGWTG	GAYGEGGE	426
Sbjct	373	EVG + EVGQTE	+ +TFSTCF PIKTTFSTCF	GAPFFPRP V GAPFFPRPAKV	YAELL+KR++ + YAELLIKRLKNSH	+VYLVNTGWTGO AKVYLVNTGWTGO	GAYG+GG+ GAYGDGGQ	432
Query	427	RFSIPT	TRAIVNAVLS	GKLKEGPTEVL	SGFNLTIPKSALG	VDDHLLNPRKTWI	EDVSAYDA	486
Sbjct	433	RFSIP RFSIPA	TRA++ A+L+ TRAVIKAILN	DEVGKAESELLI	GFN +1PK LGFNFSIPKQLPN	+++HLLNP+KTW IENHLLNPKKTW	++ YD KNPKDYDV	492
Query	487	RAQRLI	QKFRENFEKF	KVLAAIREAGP	513			
Sbjct	493	+A LI KAHELI	KF NF++F NKFINNFKQF	V IR+AGP DVNPVIRDAGP	519			

Figure 107: BLAST eighth match for BMW92_RS10840 sequence from organism *Rickettsiella isopodorum* with an e-value of 0.0, 64% identity, 79% positives, 0% gaps, and an identity of phosphoenolpyruvate carboxykinase (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

phosphoenolpyruvate carboxykinase [Candidatus Rickettsiella viridis]

Sequence ID: WP_126322187.1 Length: 523 Number of Matches: 1

<u>See 1 more title(s)</u> See all Identical Proteins(IPG)

Range 1: 15 to 521 GenPept Graphics

Vext Match 🔺 Previou

												_
Score		Expect	Method				Identities	5	Positiv	/es	Gaps	
684 bits	(1766)	0.0	Composit	ional m	atrix adj	just.	324/50	8(64%)	402/	508(79%)	4/508(0%)	_
Query	9	TYINL +Y++L	SPDELIQH	AVKNGI A++ F	GVLSSI	GAL	AVTTGKI FV+TG+1	RTGRSP	KDRFI KD+FI	VKDEQTA	DQVAWGNI + WG +	68
Sbjct	15	SYVDL	TVEQLINE	AIERKE	EGVIAAN	IGAL	SVSTGE	RTGRSP	KDKFI	VQEAKTE	KDIDWGPV	74
Query	69	NQPVE NQP+	QRTFDQLW + F LW	ERALRY +RA Y	LSERAV C E +	YISH -+IS-	ILQVGAI	DDNYFL D +Y+L	PLKVV P+KV+	TEFAWHN T++AWHN	LFACDLFI LFA LFI	128
Sbjct	75	NÕPIA	EEHFHALW	QRAESY	YAKEVDI	FISI	NLÕVGAI	OPDYYL	PVKVI	TQYAWHN	LFARQLFI	134
Query	129	RPSGD	HANG-KPS	WVILSA	APGLKTE	PERI	GVNSD	GAVMIN	LSQRF	RVLLVGMF	YAGEMKKA	187
Sbjct	135	RPENF	HGKANKAE	WTILS	PGLKIL	PRCI)GVHSD2	ATLMLH	LSERF	VLL G VLLCGHR	YAGEIKKA	194
Query	188	MFSVL	NYLLPPHD	VLPMHC		2SGD	ALFFG	LSGTGK	TTLSA	DPHRFLI	GDDEHGWS	247
Sbjct	195	MFSVL	NYLLPASD	VLPMHC	CSANVG		ALFFG	LSGTGK	TTLSA	DP R+LI	GDDEHGWS	254
Query	248	ATSVF	NFEGGCYA	KCIDLS	SQEREP	1IWN2	AIRHGA		LDENG	V-PDYAD	ARLTQNSR	306
Sbjct	255	ENSVF	NFEGGCYA	KCIDLS	SKEREPV	TWN2	AIRHGA	MENVV MENVV	LD + LDPHI	+ PDY L LEPDYKI	A LIQN+R ASLTQNTR	314
Query	307	AAYPR	EYIPLRVE	NNR-GF	RPPDAVI	FLT		LPPVAL	LTKEC	AAYYFLS	GYTALVGS	365
Sbjct	315	VAYPL	DFISLRVP	ENRVEÇ	DLPSAVI	FLT	DL GVI	LPPVA LPPVAR	L+ EÇ LSHEÇ	QAAYYFLS QAAYYFLS	GYTALVGS	374
Query	366	TEVGS	VKGVTSTF	STCFG	APFFPRE	PTV	AELLM	KRIEAT	GCQVY	LVNTGWI	GGAYGEGG	425
Sbjct	375	TEVG	TEAIKTTF	STCFG	APFFPRE	PAKV	(AELL+) (AELLI)	KRLKNS	DANVY	LVNTGWI	GGAIG+ G GGAYGQ-G	433
Query	426	ERFSI	PTTRAIVN	AVLSG	KLKEGPI	EVLS	GFNLT	IPKSAL	GVDDH	ILLNPRKI	WEDVSAYD	485
Sbjct	434	RF I RRFPI	P TRAI+ PVTRAIIQ	AILSDE	F+K EMKTAEY	L TTLI	GFN PGFNFA	IPK+ IPKNLK	+D DIDAC	LL+PR+1 LLDPRQ1	WDDIAAYD	493
Query	486	ARAQR	LIQKFREN	FEKFK	/LAAIRE	EAGP	513					
Sbjct	494	+ + YKTKE	LI KF +N	FKKFE	/ IR+ /SKEIRD	AGP AGP	521					

Figure 108: BLAST ninth match for BMW92_RS10840 sequence from organism *Rickettsiella viridis* with an e-value of 0.0, 64% identity, 79% positives, 0% gaps, and an identity of phosphoenolpyruvate carboxykinase (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

phosphoenolpyruvate carboxykinase [Modicisalibacter sp. 'Wilcox']

Sequence ID: WP_163647577.1 Length: 525 Number of Matches: 1

Range 1: 18 to 523 GenPept Graphics

Vext Match A Previou

Score	(1732)	Expect	Method	al matrix a	diust	Identities	5(63%)	Positives	5(76%)	Gaps	_
071 DILS	(1/52)	0.0	Composition		ujust.	521/500	5(03%)	500/50	5(7070)	1/300(0%)	_
Query	10	YINLSI + NL	PDELIQHAVK	NGEGVLSS	TGALA	VTTGKRI	GRSPK	DRFIVKI	EQTAD	QVAWGNIN	69
Sbjct	18	HTNLC	AELIERAVA	DGEGRLATI	NGALV	VNTGERI	GRSPA	DRFIVDI	EPSTAD	LIDWGSVN	77
Query	70	QPVEQI	RTFDQLWERA	LRYLSERA	VYISH		NYFLP	LKVVTEI	AWHNLI	FACDLFIR	129
Sbjct	78	RPFDAI	ERFDALWERV	EDYLAEGS	SYVAE	LHVGADE	PEHYLP	IRVTTE	AWHNLI	FARNLFVR	137
Query	130	PSGDHA	ANGKPSWVIL	SAPGLKTD	PERDG	VNSDGAV	MINLS		GMPYA	GEMKKAMF	189
Sbjct	138	PEAFNI	RGKNEWTIL	NAPHFTCD	PSRDG	TNSDGAV	VINFA	RRRVLL	GM IAG	GEMKKAMF	197
Query	190	SVLNYI	LPPHDVLPM	HCAANAGQ	SGDVA	LFFGLSO	TGKTT	LSADPHI	RFLIGDI	DEHGWSAT	249
Sbjct	198	SV N+1 SVQNF1	LPEKDVLPM	HCSANVGE	DGETT	LFFGLSG	TGKTT	LSADP	RYLIGDI	DEHGWGEG	257
Query	250	SVFNFI	GGCYAKCID	LSQEREPM	IWNAI	RHGAIME	NVVLD	ENGVPDY	ADARL	TQNSRAAY	309
Sbjct	258	TVFNI	EGGCYAKCID EGGCYAKCID	LSEKNEPV	IW AI IWQAI	R GA++E RFGAVLE	NVVLD	DRRAPD	AD L.	TQNSRAAY	317
Query	310	PREYI	LRVENNRGR	PPDAVLFL	TCDLD	GVLPPVA	LLTKE	QAAYYFI	SGYTA	LVGSTEVG	369
Sbjct	318	P E+I PLEHII	DKRVEENRAG	EPSAIIFL'	TCD#	GVLPPV4 GVLPPVS	VLSKE	AAY+FI AAAYHFI	SGYTA	VGSTE+G KVGSTEMG	377
Query	370	SVKGV	STFSTCFGA	PFFPRPPT	VYAEL	LMKRIEA	TGCQV	YLVNTG	TGGAY	GEGGERFS	429
Sbjct	378	S G+ SSAGLI	EATFSTCFGA	PFFPRPARI	YA+L EYADL	L+KRIEA LIKRIEA	FGSRV	YLVNTGU YLVNTGU	TGG+Y0	GAGG RFS	437
Query	430	IPTTR/	IVNAVLSGK	LKEGPTEV	LSGFN	LTIPKSA		HLLNPRE	TWEDV	SAYDARAQ	489
Sbjct	438	IPTTR	I++AV SG SIISAVQSGA	LK+ T LKDVETRR	+ G N VDGLN	L +P + LDVPVAV	GVD PGVDSI	LL+PR- RLLDPRI	TW D - TWGDP	AYD + Q AYDRQRQ	497
Query	490	RLIQKI	RENFEKFK-	VLAAIREA	GPS	514					
Sbjct	498	L+ KI ELVAKI	" ENF+KF VENFKKFAG	V AI AG VDEAIIAAG	GPS GPS	523					

Figure 109: BLAST tenth match for BMW92 RS10840 sequence from organism

Modicisalibacter wilcox with an e-value of 0.0, 63% identity, 76% positives, 0% gaps, and an

identity of phosphoenolpyruvate carboxykinase (BLAST,

Figure 110: BLAST graphic summary of the top 10 organism sequences similarities selected aligned with *Coxiella burnetii* query sequence of gene BMW92_RS10840. Each of the alignment sequences selected are order from highest sequence similarity (top) to lowest sequence similarity (bottom). All organism sequences aligned with the query sequence have an alignment score of greater than 200 (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

CDD

Figure 111: Conserved Domain Database output results for gene BMW92_RS10840. The top domain hit match was PEPCK_ATP: Phosphoenolpyruvate carboxykinase (PEPCK) which aligned with the query sequence from amino acid residues 10-512 and had statistically significant e-value of 0e+00. The second domain hit match was PRK09344:

Phosphoenolpyruvate carboxykinase (PEPCK) which aligned with the query sequence from amino acid residues 6-513 and had a statistically significant e-value of 0e+00. The third domain hit match was PEPCK_ATP: Phosphoenolpyruvate carboxykinase (PEPCK) which aligned with the query sequence from amino acid residues 10-470 and had a statistically significant e-value of 0e+00. The fourth domain hit match was PckA: Phosphoenolpyruvate carboxykinase (PEPCK) which aligned with the query sequence from amino acid residues 12-513 and had a statistically significant e-value of 0e+00. The fifth domain hit match was pckA: Phosphoenolpyruvate carboxykinase (PEPCK) which aligned with the query sequence from amino acid residues 12-513 and had a statistically significant e-value of 0e+00. The fifth domain hit match was pckA: Phosphoenolpyruvate carboxykinase (PEPCK) which aligned with the query sequence from amino acid residues 12-513 and had a statistically significant e-value of 0e+00 (BLAST,

Figure 112: The top domain hit sequence PEPCK_ATP: Phosphoenolpyruvate carboxykinase (PEPCK) aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 10-512 and had a statistically significant e-value of 0e+00 (BLAST,

Figure 113: The second domain hit sequence PRK09344: Phosphoenolpyruvate carboxykinase (PEPCK) aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 6-513 and had a statistically significant e-value of 0e+00 (BLAST,

Figure 114: The third domain hit sequence PEPCK_ATP: Phosphoenolpyruvate carboxykinase (PEPCK) aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 10-470 and had a statistically significant e-value of 0e+00 (BLAST,

Figure 115: The fourth domain hit sequence PckA: Phosphoenolpyruvate carboxykinase (PEPCK) aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 12-513 and had a statistically significant e-value of 0e+00 (BLAST,

MUSCLE

P.japonicum	MTTNNESAVNTYTNLSNAQLIELAIQRGEGTLADNGALVVATGQRTGRSPMDRF
M.wilcox	MTTNSAAAQPTARRASVHTNLCAAELIERAVADGEGRLATNGALVVNTGERTGRSPADRF
R.isopodorum	MSAVQSKNSSKIFVDLSVEELLNFAVERKEGVIAANGALSVSTGKRTGRSPKDKF
R.viridis	MSSSLDAGTLVSGKSYVDLTVEQLINFAIERKEGVIAANGALSVSTGERTGRSPKDKF
C.bacterium	MATENQRHVDLSVAELIEMALEREEGVLSANQALVVATGKRTGRSPKDRF
L.bacterium	MHAETKAETMTYTDLSTEQLIKHALERNEGVLSTNQALSVATGTRTGRSPRDRF
A.lusitana	-MVESNEVVTMNTKAHINLSAEELVEIALARGEGELASNQALVVKTGARTGRSPKDRF
A.siphonis	-MVQSTNEVFIQSKNHLNLSAKELVELALARGEGELASNQALVVKTGSRTGRSPKDRF
C.burnetii	MEQIAARVTYINLSPDELIQHAVKNGEGVLSSTGALAVTTGKRTGRSPKDRF
C.mudrowiae	MDQIASRTVYTDLSVDELIQQALKKGEGKLSSTGALAVTTGKRTGRSPKDRF
R.microplus	MEQIVSRTVYTDLAIDELIQHALKKGEGTLSVTGALAVRTGKRTGRSPQDRF
	· :* :*:: *: · ** :: · ** ** ****** *.*
P.japonicum	IVNEPSTSDAIDWGSINRPFSAEKFDALWERVEEYLSKQDT-FISELHVGADPEHYLPIR
M.W1LCOX	IVDEPSTADLIDWGSVNRPFDAERFDALWERVEDYLAEGSS-YVAELHVGADPEHYLPIR
R.isopodorum	IVAEPKSEKDIDWDSINQALSEERFHALWQRAEQYVKDADL-FISNLQVGADPTYYLPVK
R.viridis	IVQEAKTEKDIDWGPVNQPIAEEHFHALWQRAESYAKEVDL-FISNLQVGADPDYYLPVK
C.bacterium	IVKDELTADTVDWGNVNQPFDPAKFTVLWQRAEQYMADQEV-FVSHLGVGADIEHFVPVT
L.bacterium	IVQDDVTTNTVDWGNVNQPISQDRFDALWNQIEAYLADKDT-FVSHLEVGADSEHYLPVK
A.lusitana	IVRDEITENQVDWNTINQPISPEKFNALWQKAQDYLDTRDAHFISFLKVGAHEELGVPVK
A.siphonis	IVRGQATETQVDWNQINQPISADKFEALWEKALHYLNSKDARFTSYLKVGAHETLGVSVK
C.burnetii	IVKDEQTADQVAWGNINQPVEQRTFDQLWERALRYLSERAV-YISHLQVGADDNYFLPLK
C.mudrowiae	IVKDAETADQVQWGNVNQSIVQGVFDQLWNRANAYLSKRPM-YVSHLQVGADENYFLPVQ
R.microplus	IVKDSETEDQVQWGDVNQPIVQVVFDQLWNRATAYISKRSM-YVSHLKVGADENYSIPVQ
	** : : *. :* * **:. * : : * *** :.:
P.japonicum	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWOILNAPNFVCEPSRDGTNSDGCVILNFAK
P.japonicum M.wilcox	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR
P.japonicum M.wilcox R.isopodorum	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFAROLFIRPDDFYGKVSKPEWTILSVPGLKTDPORDGVNSDATLVIHLTE
P.japonicum M.wilcox R.isopodorum R.viridis	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITOYAWHNLFAROLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINOKAWHNLFTRNLFIRPDTYNRKOKP-EWTILSAPDFHASPERDGTNSEAAVILNFSO
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNOWTILSVPGFKTDPARDGVNGDAAVILNFSO
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNGDAAVILNFSQ VMAELAWHTLFAHVLFIRPVTPPTSDOPNOWTILSTPGFKTDPARDGVNSDAAVILDFEK
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis C.burnetii	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNGDAAVILNFSQ VMAELAWHTLFAHVLFIRPVTPPTSDQPNQWTILSTPGFKTDPARDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDGAVMINLSO
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNGDAAVILNFSQ VMAELAWHTLFAHVLFIRPVTPPTSDQPNQWTILSTPGFKTDPARDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDAAVIINLSQ VITEFGWHNLFACDLFIRPDGYAKGKP-EWIILSVPGLKTDPERDKVNSDAAVIINLSO
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae R.microplus	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNSDAAVILNFSQ VMAELAWHTLFAHVLFIRPVTPPTSDQPNQWTILSTPGFKTDPARDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDAAVILNFSQ VITELAWHNLFACDLFIRPDGYYKGKP-EWIILSVPGLKTDPERDKVNSDAAVIINLSQ VITELAWHNLFACDLFIRPDGYKGKP-EWILLSVPGLKTDPERDKVNSDAAVINNLSQ
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae R.microplus	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNSDAAVILNFSQ VMAELAWHTLFAHVLFIRPVTPPTSDQPNQWTILSTPGFKTDPARDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDGAVMINLSQ VITELGWHNLFACDLFIRPDGYYKGKP-EWIILSVPGLKTDPERDKVNSDAAVILNFSQ
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae R.microplus	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNSDAAVILNFSQ VMAELAWHTLFAHVLFIRPVTPPTSDQPNQWTILSTPGFKTDPARDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDAAVILNLSQ VITELAWHNLFACELFIRPDGDYAKGKP-EWIILSVPGLKTDPERDKVNSDAAVIINLSQ * : .**.:* **:** *:*: * :::::::::::::::
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae R.microplus P.japonicum	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNGDAAVILNFSQ VMAELAWHTLFAHVLFIRPVTPPTSDQPNQWTILSTPGFKTDPARDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDGAVMINLSQ VITELAWHNLFACDLFIRPDGDYAKGKP-EWIILSVPGLKTDPERDKVNSDAAVIINLSQ * : .**.:* **:** * :*:* * :*:*: : .* * ::::::::
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae R.microplus P.japonicum M.wilcox	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNGDAAVILNFSQ VMAELAWHTLFAHVLFIRPVTPPTSDQPNQWTILSTPGFKTDPARDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDAAVILDFEK VITELAWHNLFACDLFIRPDGDYAKGKP-EWIILSVPGLKTDPERDKVNSDAAVIINLSQ VITELAWHNLFACELFIRPDRDYFKGKP-KWILLSVPGLTTDPKRDKVNSDAAVIINLSQ * : .**.:* **:** *:*:* *:*:*
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae R.microplus P.japonicum M.wilcox R.isopodorum	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNSDAAVILNFSQ VMAELAWHTLFAHVLFIRPVTPPTSDQPNQWTILSTPGFKTDPARDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDGAVMINLSQ VITELAWHNLFACELFIRPDRDYFKGKP-EWIILSVPGLKTDPERDKVNSDAAVIINLSQ * : .**.:* **:** *:*: * ::*: ::::::::::
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae R.microplus P.japonicum M.wilcox R.isopodorum R.viridis	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNSDAAVILNFSQ VMAELAWHTLFAHVLFIRPVTPPTSDQPNQWTILSTPGFKTDPARDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDGAVMINLSQ VITELAWHNLFACDLFIRPDGDYAKGKP-EWIILSVPGLKTDPERDKVNSDAAVIINLSQ * : .**.:* **:** *:** *:** *:** *:** RKVLLAGMKYAGEMKKAMFSVQNFLLPEKDVLPMHCSANVGEDGETTLFFGLSGTGKTTL RRVLLAGMRYAGEMKKAMFSVQNFLLPEKDVLPMHCSANVGEDGETTLFFGLSGTGKTTL RKVLLCGHRYAGEIKKAMFSVLNYLLPASDVLPMHCSANVGKQGDVALFFGLSGTGKTTL
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae R.microplus P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNSDAAVILNFSQ VMAELAWHTLFAHVLFIRPVTPPTSDQPNQWTILSTPGFKTDPARDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDGAVMINLSQ VITELAWHNLFACDLFIRPDGDYAKGKP-EWIILSVPGLKTDPERDKVNSDAAVIINLSQ VITELAWHNLFACELFIRPDRDYFKGKP-KWILLSVPGLTTDPKRDKVNSDAAVIINLSQ * : .**.:* **:** *:** *:** *:** RKVLLAGMKYAGEMKKAMFSVQNFLLPEKDVLPMHCSANVGEDGETTLFFGLSGTGKTTL RKVLLAGMRYAGEMKKAMFSVQNFLLPEKDVLPMHCSANVGEDGETTLFFGLSGTGKTTL RKVLLCGHRYAGEIKKAMFSVLNYLLPAVDVLPMHCSANVGKEGDVALFFGLSGTGKTTL KKVLLCGHRYAGEIKKAMFSVLNYLLPASDVLPMHCSANVGKQGDVALFFGLSGTGKTTL KKVLLCGHRYAGEIKKAMFSVLNYLLPASDVLPMHCSANVGKQGDVALFFGLSGTGKTTL
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae R.microplus P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNGDAAVILNFSQ VMAELAWHTLFAHVLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDAAVILDSQ VITELAWHNLFACELFIRPDGDYAKGKP-EWIILSVPGLKTDPERDKVNSDAAVIINLSQ * : .**.:* **:** * :** * :** :** :** :**
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae R.microplus P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNGDAAVILNFSQ VMAELAWHTLFAHVLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDAAVILNLSQ VITELAWHNLFACELFIRPDGDYAKGKP-EWIILSVPGLKTDPERDKVNSDAAVIINLSQ * : .**.:* **:** * :** * :** :** :** :**
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae R.microplus P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNSDAAVILNFSQ VMAELAWHTLFAHVLFIRPVTPPTSDQPNQWTILSTPGFKTDPARDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDGAVMINLSQ VITELAWHNLFACELFIRPDGDYAKGKP-EWIILSVPGLKTDPERDKVNSDAAVIINLSQ * : .**.:* **:** * :** * :** * :** : : .* * ::::::::
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae R.microplus P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis C.burnetii	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPENFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPOTYNRKQKP-EWTILSAPDFHASPERDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNGDAAVILNFSQ VMAELAWHTLFAHVLFIRPVTPPTSDQPNQWTILSTPGFKTDPARDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDGAVMINLSQ VITELAWHNLFACDLFIRPDGDYAKGKP-EWIILSVPGLKTDPERDKVNSDAAVIINLSQ VITELAWHNLFACELFIRPDRDYFKGKP-KWILLSVPGLTTDPKRDKVNSDAAVIINLSQ * : .**.:* **:** * :** * :** :: .* * ::::::: RKVLLAGMKYAGEMKKAMFSVQNFLLPEKDVLPMHCSANVGEDGETTLFFGLSGTGKTTL RKVLLAGMKYAGEIKKAMFSVQNFLLPEKDVLPMHCSANVGEDGETTLFFGLSGTGKTTL RKVLLCGHRYAGEIKKAMFSVLNYLLPASDVLPMHCSANVGKEGDVALFFGLSGTGKTTL RKVLLCGHRYAGEIKKAMFSVLNYLLPASDVLPMHCSANVGKGDVALFFGLSGTGKTTL RKVLLCGHRYAGEIKKAMFSVLNYLLPASDVLPMHCAANVGKQGDVALFFGLSGTGKTTL RRILCCGTHYAGEMKKAMFSVLNFILPEHNILPMHCAANAGENGDTALFFGLSGTGKTTL RRILLCGTHYAGEMKKAMFSVLNFILPEHNILPMHCAANAGENGDTALFFGLSGTGKTTL RRILLCGTHYAGEMKKAMFSVLNFILPEHNILPMHCAANAGENGDTALFFGLSGTGKTTL RRILLCGTYYAGEMKKAMFSVLNFVLPPHDVLPMHCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMPYAGEMKKAMFSVLNFVLPPHDVLPMHCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMPYAGEMKKAMFSVLNFVLPPHDVLPMHCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMPYAGEMKKAMFSVLNFVLPPHDVLPMHCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMPYAGEMKKAMFSVLNFVLPPHDVLPMHCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMPYAGEMKKAMFSVLNYLLPPHDVLPMHCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMPYAGEMKKAMFSVLNYLLPPHDVLPMHCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMPYAGEMKKAMFSVLNYLLPPHDVLPMHCAANAGENGDTALFFGLSGTGKTTL
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae R.microplus P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPDNFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPNGRYPHGRA-GWTILNAAGLPTDPARDGTNSEATLILNFKE VINQKAWHNLFTRNLFIRPDTYNRKQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNSDAAVILNFSQ VITELAWHNLFARVLFIRPSGDHANGKP-SWVILSAPGFKTDPARDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDGAVMINLSQ VITEFGWHNLFACDLFIRPDGDYAKGKP-EWIILSVPGLKTDPERDGVNSDAAVIINLSQ VITELAWHNLFACLFIRPDRDYFKGKP-KWILLSVPGLTDPKRDKVNSDAAVIINLSQ XITELAWHNLFACELFIRPDRDYFKGKP-KWILLSVPGLTTDPKRDKVNSDAAVIINLSQ K : .**.:* **:** * :** * :** * :** RKVLLAGMKYAGEMKKAMFSVQNFLLPEKDVLPMHCSANVGEDGETTLFFGLSGTGKTTL RKVLLCGHRYAGEIKKAMFSVQNFLLPEKDVLPMHCSANVGEDGETTLFFGLSGTGKTTL RKVLLCGHRYAGEIKKAMFSVLNYLLPASDVLPMHCSANVGKQGDVALFFGLSGTGKTTL RKVLLCGHRYAGEIKKAMFSVLNYLLPASDVLPMHCSANVGKQGDVALFFGLSGTGKTTL RKVLLCGHRYAGEIKKAMFSVLNYLLPASDVLPMHCSANVGKQGDVALFFGLSGTGKTTL RRILCGTHYAGEMKKAMFSVLNFILPEHNILPMHCAANAGKQGDVALFFGLSGTGKTTL RRILCGTHYAGEMKKAMFSVLNFILPEHNILPMHCAANAGENGDTALFFGLSGTGKTTL RRILLCGTHYAGEMKKAMFSVLNFILPEHNILPMHCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMPYAGEMKKAMFSVLNYLLPPHDVLPMHCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMPYAGEMKKAMFSVLNFILPEHNILPHNTCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMPYAGEMKKAMFSVLNFULPPHDVLPMHCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMPYAGEMKKAMFSVLNYLLPPHDVLPMHCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMAYAGEIKKAMFSVLNYLLPPHDVLPMHCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMAYAGEIKKAMFSVLNYLLPPHDVLPMHCAANAGENGDVALFFGLSGTGKTTL RRVLLVGMAYAGEIKKAMFSVLNYLLPPHDVLPMHCAANAGENGDVALFFGLSGTGKTTL RRVLLVGMAYAGEIKKAMFSVLNYLLPPHDVLPMHCAANAGENGDVALFFGLSGTGKTTL RRVLLVGMAYAGEIKKAMFSVLNYLLPPHDVLPMHCAANAGENGDVALFFGLSGTGKTTL
P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium L.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae R.microplus P.japonicum M.wilcox R.isopodorum R.viridis C.bacterium A.lusitana A.siphonis C.burnetii C.mudrowiae R.microplus	VTTETAWHNLFGRNLFVRPEGYNPKSKG-EWQILNAPNFVCEPSRDGTNSDGCVILNFAK VTTETAWHNLFARNLFVRPEAFNPKGKN-EWTILNAPHFTCDPSRDGTNSDGAVVINFAR VITEYAWHNLFARQLFIRPDDFYGKVSKPEWTILSVPGLKTDPQRDGVNSDATLVIHLTE VITQYAWHNLFARQLFIRPDNFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VISEYAWHNVFVHDLFIRPDNFHGKANKAEWTILSLPGLKTDPRCDGVHSDATLMLHLSE VINQKAWHNLFTRNLFIRPDTYNRQKP-EWTILSAPDFHASPERDGTNSEAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNSDAAVILNFSQ VITELAWHNLFARVLFIRPEKPATTVVPNQWTILSVPGFKTDPARDGVNSDAAVILDFEK VVTEFAWHNLFACDLFIRPSGDHANGKP-SWVILSAPGLKTDPERDGVNSDGAVMINLSQ VITEFGWHNLFACDLFIRPDGDYAKGKP-EWIILSVPGLKTDPERDGVNSDAAVIINLSQ VITELAWHNLFACELFIRPDRDYFKGKP-KWILLSVPGLKTDPERDKVNSDAAVIINLSQ * : .**.:* **:** *:** *:** *:** *:** RKVLLAGMKYAGEMKKAMFSVQNFLLPEKDVLPMHCSANVGEDGETTLFFGLSGTGKTTL RKVLLAGMKYAGEMKKAMFSVQNFLLPEKDVLPMHCSANVGEDGETTLFFGLSGTGKTTL RKVLLCGHRYAGEIKKAMFSVLNFILPEKDVLPMHCSANVGKGGDVALFFGLSGTGKTTL RKVLLCGHRYAGEIKKAMFSVLNFILPEKNVLPMHCSANVGKGGDVALFFGLSGTGKTTL RKVLLCGHRYAGEIKKAMFSVLNFILPEKNVLPMHCAANVGKGGDVALFFGLSGTGKTTL RKVLLCGHRYAGEMKKAMFSVLNFILPENDVLPMHCAANVGKGGDVALFFGLSGTGKTTL RKVLLCGHRYAGEMKKAMFSVLNFILPENNVLPMHCAANVGKGGDVALFFGLSGTGKTTL RKVLLCGHYAGEMKKAMFSVLNFILPENNVLPMHCAANVGKGGDVALFFGLSGTGKTTL RRILVCGTHYAGEMKKAMFSVLNFILPENNVLPMHCAANAGENGDTALFFGLSGTGKTTL RRILVCGTHYAGEMKKAMFSVLNFILPENNVLPMHCAANAGENGDTALFFGLSGTGKTTL RRULVGMYAGEMKKAMFSVLNFILPENNVLPMHCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMYAGEMKKAMFSVLNFILPENNVLPMHCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMYAGEIKKAMFSVLNFILPPHDVLPMHCAANAGENGDTALFFGLSGTGKTTL RRVLLVGMYAGEIKKAMFSVLNFILPPHDVLPMHCAANAGSGDVALFFGLSGTGKTTL RRVLLVGMYAGEIKKAMFSVLNYLLPPDVLPMHCAANAGKSGDVALFFGLSGTGKTTL RRVLLVGMYAGEIKKAMFTVLNYLLPPDVLPMHCAANAGKSGDVALFFGLSGTGKTTL RRVLLVGMYAGEIKKAMFTVLNYLLPPDVLPMHCAANAGKSGDVALFFGLSGTGKTTL RRVLLVGMYAGEIKKAMFTVLNYLLPPDVLPMHCAANAGKSGDVALFFGLSGTGKTTL RRVLLVGMYAGEIKKAMFTVLNYLLPPDVLPMHCAANAGKSGDVALFFGLSGTGKTTL

P.japonicum	SADPSRYLIGDDEHGWGKGTVFNIEGGCYAKCIDLSAENEPVIWNAIRFGAVLENVILD-
M.wilcox	SADPARYLIGDDEHGWGEGTVFNIEGGCYAKCIDLSEKNEPVIWQAIRFGAVLENVVLD-
R.isopodorum	SADPDRFLIGDDEHAWSETGVFNFEGGCYAKCIDLSKEREPLIWNAIRHGAVMENVVLDP
R.viridis	SADPERYLIGDDEHGWSENSVFNFEGGCYAKCIDLSKEREPVIWNAIRHGAVMENVVLDP
C.bacterium	SADPERYLIGDDEHGWSDHGVFNFEGGCYAKCINLSKEREPVIWDAIRYGAIMENVVLDP
L.bacterium	SADPERFLIGDDEHGWGKSGVFNFEGGCYAKCIDLSKEKEPVIWDAIRHGAIMENVVLD-
A.lusitana	SADPERFLIGDDEHGWGNDGVFNFEGGCYAKCIDLSEEREPLIWNAIRYGSVIENVVLDP
A.siphonis	SADPKRLLIGDDEHGWGEDGIFNFEGGCYAKCIDLSPEREPLIWNAIRFGTVIENVVLNP
C.burnetii	SADPHRFLIGDDEHGWSATSVFNFEGGCYAKCIDLSQEREPMIWNAIRHGAIMENVVLD-
C.mudrowiae	SADPNRFLIGDDEHGWSRTGVFNFEGGCYAKCIDLSSEREPMIWEAIRHGAIMENVVLQ-
R.microplus	SADPNRFLIGDDEHGWSRTGVFNFEGGCYAKCIDLSLEREPIIWESIRYGAIMENVVLQ-
	**** * ********************************
P.japonicum	ERRVPDYNDDSLTQNSRAAYPLEHIEKRVLENR-AGEPSAIVFLTCDMSGVLPPVSILSK
M.wilcox	DRRAPDYADDSLTQNSRAAYPLEHIDKRVEENR-AGEPSAIIFLTCDMSGVLPPVSVLSK
R.isopodorum	ETLDPNYKDARLTQNTRVAYPLNFIESRFRANRVDRLPDAVIFLCCDLYGVLPPIACLNH
R.viridis	HTLEPDYKDASLTQNTRVAYPLDFISLRVPENRVEQLPSAVIFLTCDLYGVLPPVARLSH
C.bacterium	KTKEPLYGDASLTENTRAAYPLEHIAMRVPENQ-AGHPQAVIFLTCDLYGVLPPVAILNK
L.bacterium	ENQAPDYSDSTLSMNSRAAYPREHIEMRAEANR-GGQPDAVLFLTCDLYGVLPPVSLLSK
A.lusitana	VTKNPDYGDASLTQNTRAAYPREFIPQRVENNR-GRQPNAVLFLTCDLYGVLPPVARLTP
A.siphonis	QTREPDYADASLTQNTRAAYPREFIPERVENNR-GRQPHAVLFLTCDLYGVLPPVARLTP
C.burnetii	ENGVPDYADARLTQNSRAAYPREYIPLRVENNR-GRPPDAVLFLTCDLDGVLPPVALLTK
C.mudrowiae	ADGQPDYRNASLTQNTRAAYPREHISLRVKDNR-GRPPDSVIFLTCDLYGVLPPVALLTK
R.microplus	ADGQPAYNDASLTQNTRAAYPREHILFRVKENR-GRPPDAVIFLTCDLYGVLPPVSLLTK
-	* * : *: *:*.** :.* * *. * :::** **: *****:: *.
P.japonicum	EAAAYHFLSGYTAKVGSTEMGSSSGLEATFSTCFGAPFFPRPAHVYADLLIKRIEEFGSQ
M.wilcox	EAAAYHFLSGYTAKVGSTEMGSSAGLEATFSTCFGAPFFPRPAREYADLLIKRIEAFGSR
R.isopodorum	EQAAYYFLSGYTALVGSTEVGQTEPIKTTFSTCFGAPFFPRPAKVYAELLIKRLKNSHAK
R.viridis	EQAAYYFLSGYTALVGSTEVGQTEAIKTTFSTCFGAPFFPRPAKVYAELLIKRLKNSDAN
C.bacterium	EQAAYHFLSGYTALVGSTEVGSTAGIKSTFSTCFGAPFFPRPAQVYADLLIKRLTETGAQ
L.bacterium	EQAAYHFLSGYTALVGSTEVGQTEGIKPTFSTCFGAPFFPLSPSVYAELLIKRIEETGAQ
A.lusitana	EOAAYYFLSGYTALVGSTEVGOGSGIKPTFSTCFGAPFFPRPPRVYAELLMKRLONFDTO
A.siphonis	EOAAYYFLSGYTALVGSTEVGOGSGIKPTFSTCFGAPFFPRPPGVYAELLMKRLRNFDTO
C.burnetii	EQAAYYFI.SGYTALVGSTEVGSVKGVTSTFSTCFGAPFFPRPPTVYAELLMKRTEATGCO
C.mudrowiae	EQAAYYFI.SGYTALVGSTEVGSVKGVTPTFSTCFGAPFFPRPPTVYAELLMKRTEETOCO
R microplus	AQAAVVELSCYTALVCSTEVCSVKCTVDTESSCECADEEDDDVVVAKLLMKRIEFTOCO
R.MICLOPIUS	********* ****** * *******************
P. japonicum	VYLWNTCWTCCAYCOCCNRFSTPTTRATTNAVOTCVLKDAFTFOLPCLNLSVPKHTPCVF
M wilcox	VILVMTCWTCCSVCOCCSPESTDTTDCTTSAVOSCALKDVETDDVDCLNLDVDVAVDCVD
P isopodorum	VILVNTGWTGGDTGGGGGKT DITTINGTIDAVGDGALADVITAVTGGDALADVITAVTGVD
R. ISOPOUOTUM	
C bastorium	
L.bacterium	VILVNIGWIGGFIGE-GARFDIFTTRAVIRALLIGALKHVFTEVMPGFNLVIPKEVPDVE
L.bacterium	VYLVNTGWTGGAYGQGGERFSIPTTRAIVRAILSGALKDANTITLPGFNLAIPETINGVD
A.IUSItana	VILVNTGWSGGAHGEGGKRFSIPTTRAVVTAIVNGKLKDAEYEKLPGFNFDIPKAVDGVE
A.Sipnonis	VYLVNTGWTGGSHGEGGKRFSIPTTRSVVTAIVEGTLKNAEFETLPGFNIEIPKDVPGVD
C.burnetii	VYLVNTGWTGGAYGEGGERFSIPTTRAIVNAVLSGKLKEGPTEVLSGFNLTIPKSALGVD
C.mudrowiae	VYLVNTGWTGGAYGEGGVRFSIPTTRAIIDAILTRKLRNQPTENLKGFNLAIPKSAPGVE
R.microplus	VYLVNTGWMGGAYGEGGVRFRIPITRSIIDAILTRKLINQPTENLKGFNLAIPQSVPGVE
	***** ** ** ** ** ** ** ** ** ** ** **

P.japonicum	DRLLNI	RNT	WED	TAAY	(DAQA	ARLVA	AQFV	ENFI	KKFQC	SVDE/	IIE	AGPQ	-INP
M.wilcox	SRLLDI	RET	WGD	PAA	(DRQR	QELVA	AKFV	ENFI	KKFAC	SVDE/	AIIA	AGPS	-LN-
R.isopodorum	NHLLNI	KKT	WKN	PKD 3	(DVKA	HELIN	KFI	NNF1	KQFD-	-VNP\	/IRD	AGPV	SYKD
R.viridis	ACLLDI	RQT	WDD	IAA	(DYKT	KELIA	AKFI	DNF	KKFE-	-VSKI	IRD	AGPV	-L
C.bacterium	TRLLNI	ראבי	WNN	IHQ <mark>A</mark> Y	(QASM	KELMI	OKFT	ENF	KKFKI	IVSE	IRK	AGPT	E-
L.bacterium	SQLLN	VKT	WSD	STAY	EA KL	MELSE	QFR	ENFI	KR <mark>FD</mark> -	VAP	IVK	AGPL	
A.lusitana	SKLLNI	RKT	WND	TAAF	IDKYA	RILI	QFI	ENFI	KR <mark>F</mark> N-	-VSEI	IRN	AGPS	-LD-
A.siphonis	TRLLNI	RKT	WDN	IQAAF	IDANA	RTLIS	SQFI	ENFI	KR <mark>F</mark> N-	-VSDA	IRN	AGPT	-LD-
C.burnetii	DHLLNI	RKT	WED	VSA	DARA	QRLIC	2KFR	ENFI	KFK-	VLA	IRE	AGPS	DVH-
C.mudrowiae	DKILNI	RQF	WTC	VRA	DIKA	LTLI	KFR	ENF	VKFQ-	-VTD	IQK	AGPV	-IE-
R.microplus	DKVLNI	RK	WSD	LKA	DIKA	FSLI	CKFQ	ENF	VKFQ-	-VTE	IRE	AGPI	-IE-
	:*:*	:::	* :	:	::	*	:*	:**	.*	*	*	* * *	

Figure 116: MUSCLE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10840 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered randomly and are listed from top to bottom as followed: *P. japonicum, M. wilcox, R. isopodorum, R. viridis, C. bacterium, L. lusitana, A. siphonis, C. burnetii, C. mudrowiae, R. microplus.* Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid (MUSCLE, ">https://www.ebi.ac.uk/Tools/msa/muscle/>).

Figure 117: MUSCLE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10840 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *P. japonicum*, *M. wilcox*, *L. bacterium*, *C. burnetii*, *C. mudrowiae*, *R. microplus*, *R. isopodorum*, *R. viridis*, *C. bacterium*, *A. lusitana*, *A. siphonis*. The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (MUSCLE, ">https://www.ebi.ac.uk/Tools/msa/muscle/>).

Figure 118: MUSCLE multiple sequence alignment real phylogenetic tree for *Coxiella burnetii* gene BMW92_RS10840 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *P. japonicum*, *M. wilcox*, *L. bacterium*, *C. burnetii*, *C. mudrowiae*, *R. microplus*, *R. isopodorum*, *R. viridis*, *C. bacterium*, *A. lusitana*, *A. siphonis*. The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (MUSCLE, ">https://www.ebi.ac.uk/Tools/msa/muscle/>).

Figure 119: Sequence logo generated from the MUSCLE multiple sequence alignments of *Coxiella burnetii* gene BMW92_RS10840 and the top 10 organism sequences similarities selected. Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid. The conservation of each amino acid among residue across similar sequences is represented by the height of each single letter abbreviation of the amino acid. (WebLogo, <https://weblogo.berkeley.edu/logo.cgi>).

T-COFFEE

	MVESNEVVTMNTKAHINLSAEELVEIALARGEGELASNOALVVKTGA
Asiphonis	MVOSTNEVETOSKNHLNI.SAKELVELALARGEGELASNOALVVKTGS
C.bacterium	MATENORHVDI.SVAELTEMALEREEGVI.SANOALVVATGK
C burnetii	
C mudrowiae	MDOT ASPTUYTDI.SUDEI.TOOAI.KKGEGKI.SSTGAI.AVTTGK
L hacterium	
M wilcov	
M.WIICOX D. jananjaum	
P. Japonicum D. japonadamum	MITINESAVNITINESNAQLIELAIQRGEGILADNGALVVAIGQ
R.1sopodorum	MSAVQSKNSSKIFVDLSVEELLNFAVERKEGVIAANGALSVSTGK
R.micropius	MEQIVSRTVYTDLAIDELIQHALKKGEGTLSVTGALAVRTGK
R.VITIdis	MSSSLDAGTLVSGKSYVDLTVEQLINFAIERKEGVIAANGALSVSTGE
	* • • • • • • • • • • • • • • • • • • •
 1	
A.lusitana	RTGRSPKDRFIVRDEITENQVDWNTINQPISPEKFNALWQKAQDYLDTRD
A.siphonis	RTGRSPKDRFIVRGQATETQVDWNQINQPISADKFEALWEKALHYLNSKD
C.bacterium	RTGRSPKDRFIVKDELTADTVDWGNVNQPFDPAKFTVLWQRAEQYMADQE
C.burnetii	RTGRSPKDRFIVKDEQTADQVAWGNINQPVEQRTFDQLWERALRYLSERA
C.mudrowiae	RTGRSPKDRFIVKDAETADQVQWGNVNQSIVQGVFDQLWNRANAYLSKRP
L.bacterium	RTGRSPRDRFIVQDDVTTNTVDWGNVNQPISQDRFDALWNQIEAYLADKD
M.wilcox	RTGRSPADRFIVDEPSTADLIDWGSVNRPFDAERFDALWERVEDYLAEGS
P.japonicum	RTGRSPMDRFIVNEPSTSDAIDWGSINRPFSAEKFDALWERVEEYLSKQD
R.isopodorum	RTGRSPKDKFIVAEPKSEKDIDWDSINQALSEERFHALWQRAEQYVKDAD
R.microplus	RTGRSPQDRFIVKDSETEDQVQWGDVNQPIVQVVFDQLWNRATAYISKRS
R.viridis	RTGRSPKDKFIVQEAKTEKDIDWGPVNQPIAEEHFHALWQRAESYAKEVD
	***** *:*** : : *. :*: * **:: *
A.lusitana	AHFISFLKVGAHEELGVPVKVITELAWHNLFARVLFIRPEKPATTVVPNQ
A.siphonis	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ
A.siphonis C.bacterium	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG
A.siphonis C.bacterium C.burnetii	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS
A.siphonis C.bacterium C.burnetii C.mudrowiae	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFACELFIRPDRDYFK-GKPK
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFACELFIRPDRDYFK-GKPK -LFISNLQVGADPDYYLPVKVITQYAWHNLFARQLFIRPENFHGKANKAE
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFACELFIRPDRDYFK-GKPK -LFISNLQVGADPDYYLPVKVITQYAWHNLFARQLFIRPENFHGKANKAE : : * ***. ::: * :.**:*
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFACELFIRPDRDYFK-GKPK -LFISNLQVGADPDYYLPVKVITQYAWHNLFARQLFIRPDNFHGKANKAE : : * ***. ::: * :.**:* **:**
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFACELFIRPDRDYFK-GKPK -LFISNLQVGADPDYYLPVKVITQYAWHNLFARQLFIRPENFHGKANKAE : : * ***. : : * : **:*
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFACELFIRPDRDYFK-GKPK -LFISNLQVGADPDYYLPVKVITQYAWHNLFARQLFIRPENFHGKANKAE : : * ***. : : * : .**:* **:*
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFACLFIRPDRDYFK-GKPK -LFISNLQVGADPDYYLPVKVITQYAWHNLFARQLFIRPENFHGKANKAE : : * ***. :: * : .**: **:**
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium C.burnetii	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFARQLFIRPDDFYGKVSKPE :: * ***. :: * : **:* WTILSVPGFKTDPARDGVNGDAAVILNFSQRRILICGTHYAGEMKKAMFS WTILSTPGFKTDPARDGVNSDAAVILDFEKHRILICGTYYAGEMKKAMFS WTILNAAGLPTDPARDGTNSEATLILNFKEKKILLCGLRYAGEMXKAMFS
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPDGDYAK-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFACQLFIRPDDFYGKVSKPE -LFISNLQVGADPDYYLPVKVITQYAWHNLFARQLFIRPDNFHGKANKAE :: * ***. :.: * :.**:* **:** WTILSVPGFKTDPARDGVNGDAAVILNFSQRRILICGTHYAGEMKKAMFS WTILSTPGFKTDPARDGVNSDAAVILDFEKHRILICGTYYAGEMKKAMFS WTILNAAGLPTDPARDGTNSEATLILNFKEKKILLCGLRYAGEMXKAMFS WVILSAPGLKTDPERDGVNSDAAVINLSQRRVLLVGMPYAGEMKKAMFS
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.wiridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPDGDYAK-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFACLFIRPDDFYGKVSKPE -LFISNLQVGADPDYYLPVKVITQYAWHNLFARQLFIRPDNFHGKANKAE :: * ***. :: * : **:* **:** WTILSVPGFKTDPARDGVNGDAAVILNFSQRRILICGTHYAGEMKKAMFS WTILSTPGFKTDPARDGVNSDAAVILDFEKHRILICGTYYAGEMKKAMFS WTILSAPGLKTDPERDGVNSDGAVMINLSQRRVLLVGMPYAGEMKKAMFS WILSAPGLKTDPERDGVNSDAAVINLSQRRVLLVGMPYAGEMKKAMFF
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFACLFIRPDDFYGKVSKPE -LFISNLQVGADPDYYLPVKVITQYAWHNLFARQLFIRPDNFHGKANKAE :: * ***. :: * : **:*******************
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFARQLFIRPDDFYGKVSKPE -LFISNLQVGADPDYYLPVKVITQYAWHNLFARQLFIRPDNFHGKANKAE :: * ***. :: * : **:* **:* WTILSVPGFKTDPARDGVNGDAAVILNFSQRRILICGTHYAGEMKKAMFS WTILSTPGFKTDPARDGVNSDAAVILDFEKHRILICGTYYAGEMKKAMFS WTILSAPGLKTDPERDGVNSDGAVMINLSQRRVLLVGMPYAGEMKKAMFS WILSAPGLKTDPERDGVNSDAAVIINLSQRRVLLVGMPYAGEMKKAMFT WTILSAPDFHASPERDGTNSEAAVILNFSQRRILVCGTHYAGEMKKAMFT
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R isopodorum	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFACELFIRPDRDYFK-GKPK -LFISNLQVGADPDYYLPVKVITQYAWHNLFARQLFIRPENFHGKANKAE :: * ***. :: * : **:* WTILSVPGFKTDPARDGVNGDAAVILNFSQRRILICGTHYAGEMKKAMFS WTILSTPGFKTDPARDGVNSDAAVILDFEKHRILICGTYYAGEMKKAMFS WTILSAPGLKTDPERDGVNSDAAVILNFSQRRVLLVGMPYAGEMKKAMFS WILSAPGLKTDPERDGVNSDAAVINLSQRRVLLVGMPYAGEMKKAMFS WILSAPGLKTDPERDGVNSDAAVINLSQRRVLLVGMAYAGEIKKAMFT WTILSAPDFHASPERDGTNSEAAVINFSQRRILVCGTHYAGEMKKAMFS WILSAPDFHASPERDGTNSEAAVINFSQRRILVCGTHYAGEMKKAMFS
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFGRNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADPDYYLPVKVITQYAWHNLFARQLFIRPDRDYFK-GKPK -LFISNLQVGADPDYYLPVKVITQYAWHNLFARQLFIRPENFHGKANKAE :: * ***. :.: * :.**: **:* WTILSVPGFKTDPARDGVNGDAAVILNFSQRRILICGTHYAGEMKKAMFS WTILSTPGFKTDPARDGVNSDAAVILDFEKHRILICGTYYAGEMKKAMFS WILSAPGLKTDPERDGVNSDGAVMINLSQRRVLLVGMPYAGEMKKAMFS WILSAPGLKTDPERDGVNSDAAVIINLSQRRVLLVGMAYAGEIKKAMFT WTILSAPDFHASPERDGTNSEAAVILNFSQRRILVCGTHYAGEMKKAMFS WILSAPGLKTDPERDKVNSDAAVINFSQRRILVCGTHYAGEMKKAMFS WILSAPGLKTDPERDKVNSDAAVINFSQRRILVCGTHYAGEMKKAMFS WIILSVPGLKTDPERDKVNSDAAVINFSQRRILVCGTHYAGEMKKAMFS WIILSVPGLKTDPERDKVNSDAAVINFSQRRILVCGTHYAGEMKKAMFS WIILSAPDFHASPERDGTNSEAAVINFSQRRILVCGTHYAGEMKKAMFS WILSAPDFHASPERDGTNSEAAVINFSQRRILVCGTHYAGEMKKAMFS WILSAPDFHASPERDGTNSEAAVINFSQRRILVCGTHYAGEMKKAMFS WILSAPDFHASPERDGTNSDGAVVINFARRVLLAGMKYAGEMKKAMFS WILSAPGLKTDPRDKDNSDATLVINLSQRRVLLVGGRYAGEIKKAMFS WILSVPGLKTDPRDFNSDGCVILNFAKRKVLLAGMKYAGEMKKAMFS WILSVPGLKTDPRDFNSDGCVILNFAKRKVLLAGMKYAGEMKKAMFS WILSVPGLKTDPQRDGVNSDATLVINLSORPVLLVGGRYAGEIKKAMFS
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus P. wiridia	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPDGDYAK-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVRVTNQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFARQLFIRPDDFYGKVSKPE -LFISNLQVGADPDYYLPVKVITQYAWHNLFARQLFIRPDRDYFK-GKPK -LFISNLQVGADPDYYLPVKVITQYAWHNLFARQLFIRPENFHGKANKAE : : * ***. :.: * : .**.: * *:*** WTILSVPGFKTDPARDGVNGDAAVILNFSQRRILICGTHYAGEMKKAMFS WTILSTPGFKTDPARDGVNSDAAVILDFEKHRILICGTYYAGEMKKAMFS WTILSAPGLKTDPERDGVNSDGAVMINLSQRRVLLVGMPYAGEMKKAMFS WILSAPGLKTDPERDGVNSDAAVINLSQRRVLLVGMPYAGEMKKAMFS WIILSVPGLKTDPERDGTNSEAAVILNFSQRRILVCGTHYAGEMKKAMFS WILSAPDFHASPERDGTNSEAAVILNFSQRRILVCGTHYAGEMKKAMFS WILSAPDFHASPERDGTNSEAAVILNFSQRRVLLVGMAYAGEIKKAMFS WILSAPDFHASPERDGTNSDGAVVINFARRRVLLAGMKYAGEMKKAMFS WJILSVPGLKTDPRRDKVNSDAAVINFSQRRILVCGTHYAGEMKKAMFS WILSVPGLKTDPRRDKVNSDAAVINFARRRVLLAGMKYAGEMKKAMFS WILSVPGLKTDPRRDKVNSDAAVINFARRRVLLAGMKYAGEMKKAMFS WILSVPGLKTDPRRDKVNSDAAVINFARRRVLLAGMKYAGEMKKAMFS WILSVPGLKTDPRRDKVNSDAAVINFARRRVLLAGMKYAGEMKKAMFS WILSVPGLKTDPRRDKVNSDAAVINFARRRVLLAGMKYAGEMKKAMFS WILSVPGLKTDPRRDKVNSDAAVINFARRRVLLAGMKYAGEMKKAMFS WILSVPGLKTDPRRDKVNSDAAVINKSDARVINFARRRVLLAGMKYAGEMKKAMFS WILSVPGLKTDPRRDKVNSDAAVINFARRRVLLAGMKYAGEMKKAMFS
A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis	ARFTSYLKVGAHETLGVSVKVMAELAWHTLFAHVLFIRPVTPPTSDQPNQ -VFVSHLGVGADIEHFVPVTVISEYAWHNVFVHDLFIRPNGRYPH-GRAG -VYISHLQVGADDNYFLPLKVVTEFAWHNLFACDLFIRPSGDHAN-GKPS -MYVSHLQVGADENYFLPVQVITEFGWHNLFACDLFIRPDGDYAK-GKPE -TFVSHLEVGADSEHYLPVKVINQKAWHNLFTRNLFIRPDTYNRK-QKPE -SYVAELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEAFNPK-GKNE -TFISELHVGADPEHYLPIRVTTETAWHNLFARNLFVRPEGYNPK-SKGE -LFISNLQVGADPTYYLPVKVITEYAWHNLFARQLFIRPDDFYGKVSKPE -MYVSHLKVGADENYSIPVQVITELAWHNLFACLFIRPDDPYGKVSKPE -LFISNLQVGADPDYYLPVKVITQYAWHNLFARQLFIRPENFHGKANKAE : : * ***. : : * : **:*****************

A.lusitana	VLNFILPEHNILPMHCAANAGENGDTALFFGLSGTGKTTLSADPERFLIG
A.siphonis	VLNFVLPOHDILPMHCAANASKEGDTALFFGLSGTGKTTLSADPKRLLIG
C.bacterium	VI.NETLPEKNVI.PMHCAANVGKOGDVALFEGI.SGTGKTTI.SADPERVI.TG
C burnetii	
C.mudrowiae	VLNYLLPPHDVLPMHCAANAGKSGDVALFFGLSGTGKTTLSADPNRFLIG
L.bacterium	VMNFLLPNIDVLPMHCASNIGMEGDVALFFGLSGTGKTTLSADPERFLIG
M.wilcox	VQNFLLPEKDVLPMHCSANVGEDGETTLFFGLSGTGKTTLSADPARYLIG
P.japonicum	VQNFLLPEKDVLPMHCSANVGEDGETTLFFGLSGTGKTTLSADPSRYLIG
R.isopodorum	VMNYLLPAVDVLPMHCSANVGKEGDVALFFGLSGTGKTTLSADPDRFLIG
R.microplus	VI.NYLLPPODVLPMHCAANTGKSGDVALFFGLSGTGKTTLSADPNRFLTG
P wiridig	
K.VIIIdis	
	· · · · · · · · · · · · · · · · · · ·
A.lusitana	DDEHGWGNDGVFNFEGGCYAKCIDLSEEREPLIWNAIRYGSVIENVVLDP
A.siphonis	DDEHGWGEDGIFNFEGGCYAKCIDLSPEREPLIWNAIRFGTVIENVVLNP
C.bacterium	DDEHGWSDHGVFNFEGGCYAKCINLSKEREPVIWDAIRYGAIMENVVLDP
C.burnetii	DDEHGWSATSVFNFEGGCYAKCIDLSQEREPMIWNAIRHGAIMENVVLDE
C.mudrowiae	DDEHGWSRTGVFNFEGGCYAKCIDLSSEREPMIWEAIRHGAIMENVVLQA
L.bacterium	DDEHGWGKSGVFNFEGGCYAKCIDLSKEKEPVIWDAIRHGAIMENVVLDE
M.wilcox	DDEHGWGEGTVFNIEGGCYAKCIDLSEKNEPVIWQAIRFGAVLENVVLDD
P.japonicum	DDEHGWGKGTVFNIEGGCYAKCIDLSAENEPVIWNAIRFGAVLENVILDE
R.isopodorum	DDEHAWSETGVFNFEGGCYAKCIDLSKEREPLIWNAIRHGAVMENVVLDP
R.microplus	DDEHGWSRTGVFNFEGGCYAKCIDLSLEREPIIWESIRYGAIMENVVLQA
	DEPUCYCENCUENERCCOVA VOTEL CVEREDUTINA TRUCAVMENUUT DE
R.viridis	DDEHGWSENSVFNFEGGCIAKCIDLSKEREPVIWNAIRHGAVMENVVLDP
R.viridis	DDEHGWSENSVFNFEGGCIARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.* :**:**:** :**:**:**
R.viridis	DDEHGWSENSVFNFEGGCIARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.* :**:**:** :**:**:**
R.viridis A.lusitana	DDEHGWSENSVFNFEGGCYARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.*. :****.*. :****** :************************************
R.viridis A.lusitana A.siphonis	DDEHGWSENSVFNFEGGCYARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.*. :****.*. :****.* :**** :**** :**** :**** :**** :*** <td:***< td=""> :**<!--</td--></td:***<>
R.viridis A.lusitana A.siphonis C.bacterium	DDEHGWSENSVFNFEGGCYARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.*. :****.* :************************************
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii	DDEHGWSENSVFNFEGGCYARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.*. :**:********** :.**:**:**:**:** VTKNPDYGDASLTQNTRAAYPREFIPQRVENNRG-RQPNAVLFLTCDLYG QTREPDYADASLTQNTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG KTKEPLYGDASLTENTRAAYPLEHIAMRVPENQA-GHPQAVIFLTCDLYG N-GVPDYADARLTQNSRAAYPREYIPLRVENNRG-RPPDAVLFLTCDLDG
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae	DDEHGWSENSVFNFEGGCYARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.*. :**:********** :.**:**:**:**:** VTKNPDYGDASLTQNTRAAYPREFIPQRVENNRG-RQPNAVLFLTCDLYG QTREPDYADASLTQNTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG KTKEPLYGDASLTENTRAAYPLEHIAMRVPENQA-GHPQAVIFLTCDLYG N-GVPDYADARLTQNSRAAYPREYIPLRVENNRG-RPPDAVLFLTCDLDG D-GQPDYRNASLTQNTRAAYPREHISLRVKDNRG-RPPDSVIFLTCDLYG
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium	DDEHGWSENSVFNFEGGCYARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.*. :**:********** :.**:**:**:**:** VTKNPDYGDASLTQNTRAAYPREFIPQRVENNRG-RQPNAVLFLTCDLYG QTREPDYADASLTQNTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG KTKEPLYGDASLTENTRAAYPLEHIAMRVPENQA-GHPQAVIFLTCDLYG N-GVPDYADARLTQNSRAAYPREYIPLRVENNRG-RPPDAVLFLTCDLDG D-GQPDYRNASLTQNTRAAYPREHISLRVKDNRG-RPPDSVIFLTCDLYG N-QAPDYSDSTLSMNSRAAYPREHIEMRAEANRG-GQPDAVLFLTCDLYG
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox	DDEHGWSENSVFNFEGGCYARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.*. :**:********** :.**:**:**:**:** VTKNPDYGDASLTQNTRAAYPREFIPQRVENNRG-RQPNAVLFLTCDLYG QTREPDYADASLTQNTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG KTKEPLYGDASLTENTRAAYPLEHIAMRVPENQA-GHPQAVIFLTCDLYG N-GVPDYADARLTQNSRAAYPREYIPLRVENNRG-RPPDAVLFLTCDLG D-GQPDYRNASLTQNTRAAYPREHISLRVKDNRG-RPPDSVIFLTCDLYG N-QAPDYSDSTLSMNSRAAYPREHIEMRAEANRG-GQPDAVLFLTCDLYG R-RAPDYADDSLTQNSRAAYPLEHIDKRVEENRA-GEPSAIIFLTCDMSG
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum	DDEHGWSENSVFNFEGGCYAKCIDLSKEREPVIWNAIRHGAVMENVVLDP ****.*. :**:***************************
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum	DDEHGWSENSVFNFEGGCYARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.*. :**:********** :.**:**:**:**:** VTKNPDYGDASLTQNTRAAYPREFIPQRVENNRG-RQPNAVLFLTCDLYG QTREPDYADASLTQNTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG KTKEPLYGDASLTENTRAAYPLEHIAMRVPENQA-GHPQAVIFLTCDLYG N-GVPDYADARLTQNSRAAYPREYIPLRVENNRG-RPPDAVLFLTCDLYG D-GQPDYRNASLTQNTRAAYPREHISLRVKDNRG-RPPDSVIFLTCDLYG N-QAPDYSDSTLSMNSRAAYPREHISLRVKDNRG-RPPDSVIFLTCDLYG R-RAPDYADDSLTQNSRAAYPLEHIEMRAEANRG-GQPDAVLFLTCDLYG R-RAPDYADDSLTQNSRAAYPLEHIEKRVLENRA-GEPSAIIFLTCDMSG ETLDPNYKDARLTQNTRVAYPLNFIESRFRANRVDRLPDAVIFLCCDLYG
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus	DDEHGWSENSVFNFEGGCYARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.*. :**:********** :.**:**:**:**:**: VTKNPDYGDASLTQNTRAAYPREFIPQRVENNRG-RQPNAVLFLTCDLYG QTREPDYADASLTQNTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG KTKEPLYGDASLTENTRAAYPLEHIAMRVPENQA-GHPQAVIFLTCDLYG N-GVPDYADARLTQNSRAAYPREYIPLRVENNRG-RPPDAVLFLTCDLG D-GQPDYRNASLTQNTRAAYPREHISLRVKDNRG-RPPDSVIFLTCDLYG N-QAPDYSDSTLSMNSRAAYPREHIEMRAEANRG-GQPDAVLFLTCDLYG R-RAPDYADDSLTQNSRAAYPLEHIEMRAEANRG-GQPDAVLFLTCDLYG R-RVPDYNDDSLTQNSRAAYPLEHIEKRVLENRA-GEPSAIIFLTCDMSG ETLDPNYKDARLTQNTRVAYPLNFIESRFRANRVDRLPDAVIFLCCDLYG D-GQPAYNDASLTQNTRAAYPREHILFRVKENRG-RPPDAVIFLCCDLYG
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis	DDEHGWSENSVFNFEGGCYARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.*. :**:********** :.**:**:**:**:**: VTKNPDYGDASLTQNTRAAYPREFIPQRVENNRG-RQPNAVLFLTCDLYG QTREPDYADASLTQNTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG KTKEPLYGDASLTENTRAAYPLEHIAMRVPENQA-GHPQAVIFLTCDLYG N-GVPDYADARLTQNSRAAYPREYIPLRVENNRG-RPPDAVLFLTCDLYG D-GQPDYRNASLTQNTRAAYPREHISLRVKDNRG-RPPDSVIFLTCDLYG N-QAPDYSDSTLSMNSRAAYPREHIEMRAEANRG-GQPDAVLFLTCDLYG R-RAPDYADDSLTQNSRAAYPLEHIEMRAEANRG-GQPDAVLFLTCDLYG R-RVPDYNDDSLTQNSRAAYPLEHIEKRVLENRA-GEPSAIIFLTCDMSG ETLDPNYKDARLTQNTRVAYPLNFIESRFRANRVDRLPDAVIFLCCDLYG D-GQPAYNDASLTQNTRAAYPREHILFRVKENRG-RPPDAVIFLTCDLYG HTLEPDYKDASLTQNTRVAYPLDFISLRVPENRVEQLPSAVIFLTCDLYG
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis	DDEHGWSENSVFNFEGGCYARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.*. :**:********** :.**:**:**:**:**: VTKNPDYGDASLTQNTRAAYPREFIPQRVENNRG-RQPNAVLFLTCDLYG QTREPDYADASLTQNTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG KTKEPLYGDASLTENTRAAYPLEHIAMRVPENQA-GHPQAVIFLTCDLYG N-GVPDYADARLTQNSRAAYPREHISLRVKDNRG-RPPDAVLFLTCDLYG D-GQPDYRNASLTQNTRAAYPREHISLRVKDNRG-RPPDSVIFLTCDLYG N-QAPDYSDSTLSMNSRAAYPREHIEMRAEANRG-GQPDAVLFLTCDLYG R-RAPDYADDSLTQNSRAAYPLEHIDKRVEENRA-GEPSAIIFLTCDMSG R-RVPDYNDDSLTQNSRAAYPLEHIEKRVLENRA-GEPSAIVFLTCDMSG ETLDPNYKDARLTQNTRVAYPLNFIESRFRANRVDRLPDAVIFLCCDLYG D-GQPAYNDASLTQNTRAAYPREHILFRVKENRG-RPPDAVIFLTCDLYG HTLEPDYKDASLTQNTRVAYPLDFISLRVPENRVEQLPSAVIFLTCDLYG * * : *: *:**** :.* * *: *: *: *:****
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis	DDEHGWSENSVFNFEGGCYARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.*. :**:********** :.**:**:**:**:**: VTKNPDYGDASLTQNTRAAYPREFIPQRVENNRG-RQPNAVLFLTCDLYG QTREPDYADASLTQNTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG KTKEPLYGDASLTENTRAAYPLEHIAMRVPENQA-GHPQAVIFLTCDLYG N-GVPDYADARLTQNSRAAYPREYIPLRVENNRG-RPPDAVLFLTCDLYG D-GQPDYRNASLTQNTRAAYPREHISLRVKDNRG-RPPDSVIFLTCDLYG N-QAPDYSDSTLSMNSRAAYPREHIEMRAEANRG-GQPDAVLFLTCDLYG R-RAPDYADDSLTQNSRAAYPLEHIDKRVEENRA-GEPSAIIFLTCDMSG R-RVPDYNDDSLTQNSRAAYPLEHIEKRVLENRA-GEPSAIVFLTCDMSG ETLDPNYKDARLTQNTRVAYPLNFIESRFRANRVDRLPDAVIFLCCDLYG D-GQPAYNDASLTQNTRAAYPREHILFRVKENRG-RPPDAVIFLTCDLYG HTLEPDYKDASLTQNTRVAYPLDFISLRVPENRVEQLPSAVIFLTCDLYG * * : *: *: *:**** :.* * *: *: *: *:******
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana	DDEHGWSENSVFNFEGGCYARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.*. :**:********** :.**:**:**:**:**: VTKNPDYGDASLTQNTRAAYPREFIPQRVENNRG-RQPNAVLFLTCDLYG QTREPDYADASLTQNTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG KTKEPLYGDASLTENTRAAYPLEHIAMRVPENQA-GHPQAVIFLTCDLYG N-GVPDYADARLTQNSRAAYPREYIPLRVENNRG-RPPDAVLFLTCDLYG D-GQPDYRNASLTQNTRAAYPREHISLRVKDNRG-RPPDSVIFLTCDLYG N-QAPDYSDSTLSMNSRAAYPREHIEMRAEANRG-GQPDAVLFLTCDLYG R-RAPDYADDSLTQNSRAAYPLEHIDKRVEENRA-GEPSAIIFLTCDMSG R-RVPDYNDDSLTQNSRAAYPLEHIEKRVLENRA-GEPSAIVFLTCDMSG ETLDPNYKDARLTQNTRVAYPLNFIESRFRANRVDRLPDAVIFLCCDLYG D-GQPAYNDASLTQNTRAAYPREHILFRVKENRG-RPPDAVIFLCCDLYG HTLEPDYKDASLTQNTRAAYPREHILFRVKENRG-RPPDAVIFLTCDLYG * * : *: *: *:*** :.* * *: *: *: *:********
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis	DDEHGWSENSVFNFEGGCYARCIDLSREREPVIWNAIRHGAVMENVVLDP ****.*. :**:********** :.**:**:**:**:**: VTKNPDYGDASLTQNTRAAYPREFIPQRVENNRG-RQPNAVLFLTCDLYG QTREPDYADASLTQNTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG KTKEPLYGDASLTENTRAAYPLEHIAMRVPENQA-GHPQAVIFLTCDLYG N-GVPDYADARLTQNSRAAYPREYIPLRVENNRG-RPPDAVLFLTCDLG D-GQPDYRNASLTQNTRAAYPREHISLRVKDNRG-RPPDSVIFLTCDLYG N-QAPDYSDSTLSMNSRAAYPREHIEMRAEANRG-GQPDAVLFLTCDLYG R-RAPDYADDSLTQNSRAAYPLEHIEMRAEANRG-GQPDAVLFLTCDLYG R-RVPDYNDDSLTQNSRAAYPLEHIEKRVLENRA-GEPSAIIFLTCDMSG ETLDPNYKDARLTQNTRVAYPLNFIESRFRANRVDRLPDAVIFLCCDLYG D-GQPAYNDASLTQNTRAAYPREHILFRVKENRG-RPPDAVIFLTCDLYG HTLEPDYKDASLTQNTRAAYPREHILFRVKENRG-RPPDAVIFLTCDLYG * * : *: *: *:**** :.* * *: *: *::********
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium	DDEHGWSENSVFNFEGGCYAKCIDLSKEREPVIWNAIRHGAVMENVVLDP ****.*. :**:***************************
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium C.burnetii	DDEHGWSENSVFNFEGGCYAKCIDLSKEREPVIWNAIRHGAVMENVVLDP ****.*. :**:***************************
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae	DDEHGWSENSVFNFEGGCYAKCIDLSKEREPVIWNAIRHGAVMENVVLDP ****.*. :**:***************************
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium	DDEHGWSENSVFNFEGGCYAKCIDLSKEREPVIWNAIRHGAVMENVVLDP ****.*. :**:***************************
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox	DDERGWSENSVFNFEGGCYAKCIDLSKEREPVIWNAIRHGAVMENVVLDP ****.*. :**:********** :.**:**:**:**:**: VTKNPDYGDASLTQNTRAAYPREFIPQRVENNRG-RQPNAVLFLTCDLYG QTREPDYADASLTQNTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG KTKEPLYGDASLTENTRAAYPLEHIAMRVPENQA-GHPQAVIFLTCDLYG N-GVPDYADARLTQNSRAAYPREYIPLRVENNRG-RPPDAVLFLTCDLYG N-QAPDYSDSTLSMNSRAAYPREHISLRVKDNRG-RPPDSVIFLTCDLYG R-RAPDYADDSLTQNSRAAYPREHIEMRAEANRG-GQPDAVLFLTCDLYG R-RAPDYADDSLTQNSRAAYPLEHIDKRVEENRA-GEPSAIIFLTCDMSG ETLDPNYKDARLTQNTRVAYPLEHIEKRVLENRA-GEPSAIIFLTCDMSG ETLDPNYKDARLTQNTRVAYPLEHIEKRVLENRA-GEPSAIVFLTCDLYG D-GQPAYNDASLTQNTRAAYPREHILFRVKENRG-RPPDAVIFLCCDLYG HTLEPDYKDASLTQNTRAAYPREHILFRVKENRG-RPPDAVIFLTCDLYG **: *: *: *:****:** ** *: *: *: *::******
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum	DDEHGWSENSVFNFEGGCYARCIDLSKEREPVIWNAIRHGAVMENVVLDP ****.*. :**:********** :.**:**:**:**:**:***: VTKNPDYGDASLTQNTRAAYPREFIPQRVENNRG-RQPNAVLFLTCDLYG QTREPDYADASLTQNTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG KTKEPLYGDASLTENTRAAYPLEHIAMRVPENQA-GHPQAVIFLTCDLYG N-GVPDYADARLTQNSRAAYPREYIPLRVENNRG-RPPDAVLFLTCDLYG N-QAPDYSDSTLSMNSRAAYPREHISLRVKDNRG-RPPDSVIFLTCDLYG R-RAPDYADDSLTQNSRAAYPLEHIDKRVEENRA-GEPSAIIFLTCDMSG R-RVPDYNDDSLTQNSRAAYPLEHIDKRVEENRA-GEPSAIIFLTCDMSG ETLDPNYKDARLTQNTRVAYPLEHIEKRVLENRA-GEPSAIVFLTCDLYG D-GQPAYNDASLTQNTRAAYPREHILFRVKENRG-RPPDAVIFLCCDLYG D-GQPAYNDASLTQNTRAAYPREHILFRVKENRG-RPPDAVIFLTCDLYG # * : *: *:*:*** :.* * :: *::****:* VLPPVARLTPEQAAYYFLSGYTALVGSTEVGQGSGIKPTFSTCFGAPFFP VLPPVARLTPEQAAYYFLSGYTALVGSTEVGQSGIKPTFSTCFGAPFFP VLPPVALLTKEQAAYYFLSGYTALVGSTEVGSVKGVTSTFSTCFGAPFFP VLPPVALLTKEQAAYYFLSGYTALVGSTEVGSVKGVTPTFSTCFGAPFFP VLPPVSLLSKEQAAYHFLSGYTALVGSTEVGSVKGVTPTFSTCFGAPFFP VLPPVSLLSKEQAAYHFLSGYTALVGSTEVGSVKGVTPTFSTCFGAPFFP
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum	DDEHGWSENSVFNFEGGCYARCIDLSKEREPVIWNAIRHGAVMENVVLDP ****.*. :**:*********:** :.**:**:**:**:***: VTKNPDYGDASLTQNTRAAYPREFIPQRVENNRG-RQPNAVLFLTCDLYG QTREPDYADASLTQNTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG KTKEPLYGDASLTENTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG N-GVPDYADARLTQNSRAAYPREYIPLRVENNRG-RPPDAVLFLTCDLYG D-GQPDYRNASLTQNTRAAYPREHISLRVKDNRG-RPPDSVIFLTCDLYG N-QAPDYSDSTLSMNSRAAYPREHIEMRAEANRG-GQPDAVLFLTCDLYG R-RAPDYADDSLTQNSRAAYPLEHIEMRAEANRG-GQPDAVLFLTCDLYG R-RVPDYNDDSLTQNSRAAYPLEHIEKRVLENRA-GEPSAIIFLTCDMSG ETLDPNYKDARLTQNTRVAYPLEHIEKRVLENRA-GEPSAIVFLTCDLYG D-GQPAYNDASLTQNTRAAYPREHILFRVKENRG-RPPDAVIFLTCDLYG HTLEPDYKDASLTQNTRVAYPLDFISLRVPENRVEQLPSAVIFLTCDLYG * * : *: *:**** :.* * :: *::** **: * VLPPVARLTPEQAAYYFLSGYTALVGSTEVGQGSGIKPTFSTCFGAPFFP VLPPVALLTKEQAAYHFLSGYTALVGSTEVGSVKGVTSTFSTCFGAPFFP VLPPVALLTKEQAAYHFLSGYTALVGSTEVGSVKGVTSTFSTCFGAPFFP VLPPVALLTKEQAAYHFLSGYTALVGSTEVGSVKGVTPTFSTCFGAPFFP VLPPVSLLSKEQAAYHFLSGYTALVGSTEVGSVKGVTSTFSTCFGAPFFP VLPPVSLLSKEQAAYHFLSGYTALVGSTEVGSVKGVTSTFSTCFGAPFFP VLPPVSLLSKEQAAYHFLSGYTALVGSTEVGQVEGIKPTFSTCFGAPFFP VLPPVSLLSKEQAAYHFLSGYTALVGSTEVGSVKGVTSTFSTCFGAPFFP VLPPVSLLSKEQAAYHFLSGYTALVGSTEVGSVKGVTSTFSTCFGAPFFP VLPPVSLLSKEAAAYHFLSGYTALVGSTEVGSYKGFTFTSTCFGAPFFP VLPPVSLSKEAAAYHFLSGYTALVGSTEVGSTEMGSSGLEATFSTCFGAPFFP VLPPVSLSKEAAAYHFLSGYTALVGSTEVGTFFFTTFTTFTTFTTFTTFTTFTTFTTFTTFTTFTTFTT
R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.microplus R.viridis A.lusitana A.siphonis C.bacterium C.burnetii C.mudrowiae L.bacterium M.wilcox P.japonicum R.isopodorum R.isopodorum R.microplus	DDEHGWSENSVFNFEGGCYARCIDLSKEREPVIWNAIRHGAVMENVVLDP ****.*. :**:********** :.**:**:**:**:**: VTKNPDYGDASLTQNTRAAYPREFIPQRVENNRG-RQPNAVLFLTCDLYG QTREPDYADASLTQNTRAAYPREFIPERVENNRG-RQPHAVLFLTCDLYG KTKEPLYGDASLTENTRAAYPREHIPRAVPENQA-GHPQAVIFLTCDLYG N-GVPDYADARLTQNSRAAYPREHISLRVKDNRG-RPPDAVLFLTCDLYG N-QAPDYSDSTLSMNSRAAYPREHISLRVKDNRG-RPPDSVIFLTCDLYG R-RAPDYADDSLTQNSRAAYPREHIEMRAEANRG-GQPDAVLFLTCDLYG R-RAPDYADDSLTQNSRAAYPLEHIEMRAEANRG-GQPDAVLFLTCDLYG B-GQPAYNDSLTQNSRAAYPLEHIEKRVLENRA-GEPSAIIFLTCDMSG ETLDPNYKDARLTQNTRVAYPLNFIESRFRANRVDRLPDAVIFLCCDLYG D-GQPAYNDASLTQNTRAAYPREHILFRVKENRG-RPPDAVIFLTCDLYG # * : *: *:**** :.* * *: *:*************

****:: *. ***:***** ****:*. : .***:*****

A.lusitana	RPPR	VYA	LLM	KRL	QN	FDTQ	VYI	VN.	rg <mark>w</mark> s	GG	HG	GG	KRF	SIP	TTF	AVV	т
A.siphonis	RPPG	VYA	LLM	KRL	RN	FDTÇ	VYI	VN'	г <mark>GW</mark> Т	GGS	HG	GG	KRF	SIP	TTF	SVV	т
C.bacterium	RPAQ	VYA	DLLI	KRL	TE:	TG <mark>A</mark> Ç	VYI	VN'	ГG <mark>W</mark> Т	GGI	YG	G-I	KRF	DIP	TTF	AVI	R
C.burnetii	RPPT	VYA	LLM	KRI	EA'	IGCÇ	VYI	VN'	г <mark>GW</mark> Т	'GG <mark>/</mark>	YG	GG	ERF	SIP	TTF	AIV	N
C.mudrowiae	RPPT	VYA	LLM	KRI	EE'	rqcç	VYI	VN'	г <mark>GW</mark> I	GG	YG	GG	VRF	SIP	TTF	AII	D
L.bacterium	LSPS	VYA	LLI	KRI	EE'	TG <mark>A</mark> Ç	VYI	VN	г <mark>GW</mark> T	GG	YG	QGG	ERF	SIP	TTF	AIV	R
M.wilcox	RPAR	EYAI	DLLI	KRI	EA]	FGSR	VYI	VN'	г <mark>GW</mark> T	GGS	SYG	QGG	SRF	SIP	TTF	GII	s
P.japonicum	RPAH	VYA	DLLI	KRI	EE]	FGSQ	VYI	VN'	г <mark>GW</mark> I	'GG <mark>I</mark>	YG	QGGI	NRF	SIP	TTF	AII	N
R.isopodorum	RPAK	VYA	LLI	KRL	KN:	SHAK	VYI	VN'	г <mark>GW</mark> T	GG	YG	OGG	QRF	SIP	ATF	AVI	ĸ
R.microplus	RPPV	VYA	KLLM	KRI	EE'	rqcç	VYI	VN'	rgw	IGG I	YG	GG	VRF	RIP	TTF	SII	D
R.viridis	RPAK	VYA	LLI	KRL	KN:	SDAN	VYI	VN'	г <mark>GW</mark> T	GG	YG	2G-1	RRFI	PIP	VTF	AII	Q
	••	**	•**:	**:			***	***	* * *	**.	:*	*	**	* *	**	• • • •	
Alusitana	ATVN	CKT.I	TAR	VEK.	T.PC	GENE	יחד	KA	VDGV	ESP	ст.т.т		ĸww	זיסע	אַמַי	עאסו	Δ
Asiphonis	ATVE	CTT.	NAE	FET.	T.P	GENT	ETE	זחאפ	VPCV		T.T.1	IPR	KTW				Δ
C.bacterium	ATT	GKT.I	кнур	TEV	MP	GENT	VTE	KE		ЕТЕ	21.1.1		אידש	NNH		OAS	м
C.burnetii	AVT.S	CKT.I	KEGP	TEV	T.SC	GENT	TT	KS	AT.GV		IT.T.1	IPR	KTW	EDV	SAV	DAR	Δ
C.mudrowiae	ATLT	RKT	RNOP	TEN	т.к	GENT		KS	APGV	EDI	CTT.1	VPR(OAW		RAV	ТК	Δ
L. bacterium	ATLS	CAT.I	KINGT	T D I .	T.P	GENT	ATE	DET.	INGV	DSC	T.T.1	VPV	KUM.	SDS	TAV	EAK	т.
M.wilcox	AVOS	CAT.I	KDVE	TRR'		CT.NT			VPCV		2111					DRO	R
P. japonicum	AVOT	CVT.I	KDAE	TEO	T.PC	CT.NT	SVE	кн		EDE	21.1.1		אידש	EDT			Δ
R i sopodorum	ATT.N		TKAE	SEL	т.т.	GENE	STE	KOI	.PNT	ENF	IT.T.1	JPK	KTW	KNE	עסאי		Δ
R.microplus	ATLT	RKT.	INOP	TEN	т.к	GENT	ATE	0.51	VPGV	EDI	WT.	IPR	KAW	SDT	.KAV	тк	Δ
R.viridis	ATLS		CTAE	VTT.	T.P	GENE		KNI			T.T.T		OTW	דמכ		DYK	ጥ
N.VII IGID	*:	:			: 3	*:*:	:*		.:	:	:*:	:*	::*	:	:	:	-
							_										
A.lusitana	RILI	EQF.	LENF	KRF	N-	VSEA	IRN	IAGI	PSL-	D							
A.siphonis	RTLI	SQF.	LENF	KRF	N-	VSDA	IRN	IAGI	PTL-	D							
C.bacterium	KELM	DKF.	renf	XKF.	KH	VSEA	IRK	(AGI	PTE-								
C.burnetii	QRLI	QKFI	RENF	EKF.	K-1	VLAA	IRE	AGI	PSDV	-H							
C.mudrowiae	LTLI	EKFI	RENF	VKF	Q-1	VTDA	IQK	(AGI	PVI-	-E							
L.bacterium	MELS	EQFI	RENF	KRF	D-1	VAPE	IVF	AGI	PL								
M.wilcox	QELV	AKF	VENF	KKF.	AG	VDEA	IIA	AGI	PSL-	N							
P.japonicum	ARLV	AQF	VENF	KKF	QG	VDEA	IIE	AGI	PQIN	-P							
R.isopodorum	HELI	NKF	INNF	KQF	D-1	VNPV	IR	AGI	PVSY	KD							
R.microplus	FSLI	EKF	QENF	VKF	'Q-	VTE.	AIR	EAG	PII	E	2						
R.viridis	KELI	AKF	IDNE	KKF	'E-	VSK	EIR	DAG	PVL								
	*	:*	:**	:*		*	*	* *	*								

Figure 120: T-COFFEE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10840 and the top 10 organism sequences similarities selected.

Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered randomly and are listed from top to bottom as followed: *A. Lusitana*, *A. siphonis*, *C. bacterium*, *C. burnetii*, *C. mudrowiae*, *L. bacterium*, *M. wilcox*, *P. japonicum*, *R. isopodorum*, *R. microplus*, *R. viridis*. Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid (T-COFFEE, <hr/>
<https://www.ebi.ac.uk/Tools/msa/tcoffee/>).

Figure 121: T-COFFEE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10840 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *A. lusitana*, *A. siphonis*, *C. bacterium*, *R. isopodorum*, *R. viridis*, *C. burnetii*, *C. mudrowiae*, *R. microplus*, *L. bacterium*, *M. wilcox*, *P. japonicum*. The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (T-COFFEE, https://www.ebi.ac.uk/Tools/msa/tcoffee/).

Figure 122: T-COFFEE multiple sequence alignment real phylogenetic tree for *Coxiella burnetii* gene BMW92_RS10840 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *A. lusitana*, *A. siphonis*, *C. bacterium*, *R. isopodorum*, *R. viridis*, *C. burnetii*, *C. mudrowiae*, *R. microplus*, *L. bacterium*, *M. wilcox*, *P. japonicum*. The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (T-COFFEE, <https://www.ebi.ac.uk/Tools/msa/tcoffee/>).

T-COFFEE Sequence Logo

Figure 123: Sequence logo generated from the T-COFFEE multiple sequence alignments of *Coxiella burnetii* gene BMW92_RS10840 and the top 10 organism sequences similarities selected. Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid. The conservation of each amino acid among residue across similar sequences is represented by the height of each single letter abbreviation of the amino acid. (WebLogo, <https://weblogo.berkeley.edu/logo.cgi>).

Protein Localization

SignalP

SignalP-5.0 prediction (Gram-negative): Sequence

Figure 124: SignalP 5.0 prediction (Gram-negative) for gene BMW92_RS10840 of *Coxiella burnetii*. The SP (Sec/SPI), TAT (Tat/SPI), LIPO (Sec/SPII), and CS probability scores combined were all less than a total 0.0184 (1.84%) which results in the likelihood of the protein being a signal peptide as highly unlikely and can confirm there is no signal peptide of these protein types. The program calculated the probability scores for OTHER as 0.9879 (98.79%). This probability score indicates the protein from the gene BMW92_RS10840 has another protein

classification that is not related to similar function or type as a signal peptide (SignalP,

<http://www.cbs.dtu.dk/services/SignalP/>).

LipoP

```
# Sequence CYT score=-0.200913
# Cut-off=-3
Sequence LipoP1.0:Best CYT 1 1 -0.200913
```

NO PLOT made - less than 4 putative cleavage sites predicted

Figure 125: LipoP 1.0 was unable to generate a plot graph due to there being less than four predicted putative cleavage sites. The best localization prediction resulted in the highest scoring class being the cytoplasmic protein class (LipoP, <http://www.cbs.dtu.dk/services/LipoP/>).
TMHMM

```
# WEBSEQUENCE Length: 517
# WEBSEQUENCE Number of predicted TMHs: 0
# WEBSEQUENCE Exp number of AAs in TMHs: 0.05524
# WEBSEQUENCE Exp number, first 60 AAs: 0.00167
# WEBSEQUENCE Total prob of N-in: 0.00762
WEBSEQUENCE TMHMM2.0 outside 1 517
```


Figure 126: TMHMM posterior probability displayed a line graph that predicts the localization of the protein coded from BMW92_RS10840 as entirely outside the membrane. The red line, representative of the protein being located in the transmembrane, was less than 0.001 (0.10% probability) across the entirety of the line graph. This is indicative of the protein being located within the transmembrane as highly unlikely. The blue line, representative of the protein being located inside the membrane, was at 0.001 (0.10% probability). This is indicative of the protein being located inside of the membrane as highly unlikely. The blue line, representative of the protein being located inside of the membrane as highly unlikely. The magenta line, representative of the protein being located outside the membrane, was at 0.99 (99% probability). This is indicative of

the protein being located outside of the membrane as highly likely (TMHMM,

<http://www.cbs.dtu.dk/services/TMHMM/>).

BOMP

The total number of valid proteins submitted is: 1 The total number of integral β-barrel outer membrane proteins predicted is: 0

Sequence name Category Best BLAST hit

Figure 127: The BOMP test result identified there are no integral beta-barrel outer membrane proteins for gene BMW92_RS10840 (BOMP, <http://services.cbu.uib.no/tools/bomp>).

PSORTb

SeqID: C.burnetii		
Analysis Report:		
CMSVM-	Unknown	[No details]
CytoSVM-	Unknown	[No details]
ECSVM-	Unknown	[No details]
ModHMM-	Unknown	[No internal helices found]
Motif-	Unknown	[No motifs found]
OMPMotif-	Unknown	[No motifs found]
OMSVM-	Unknown	[No details]
PPSVM-	Unknown	[No details]
Profile-	Unknown	[No matches to profiles found]
SCL-BLAST-	Cytoplasmic	[matched 1172572: Phosphoenolpyruvate carboxykinase [ATP]]
SCL-BLASTe-	Unknown	[No matches against database]
Signal-	Unknown	[No signal peptide detected]
Localization Score	es:	
Cytoplasmic	9.26	
CytoplasmicMemb	rane 0.24	
Periplasmic	0.48	
OuterMembrane	0.01	
Extracellular	0.01	
Final Prediction:		
Cytoplasmic	9.26	

Figure 128: The PSORTb test resulted in an analysis report that identified no detectable internal helices, motifs, or signal peptides. The PSORTb localization scores resulted in a 9.26 value for the cytoplasmic location. The localization score for cytoplasmic membrane was 0.24. The localization score for periplasmic was 0.48. The localization score for the outer membrane location was 0.01. The localization score for the extracellular location was 0.01. The calculated localization scores for gene BMW92_RS10840 resulted in the final predictable location of the protein to be cytoplasmic (PSORTb, <https://www.psort.org/psortb/ >).

Phobius

ID UNNAMED FT TOPO_DOM 1 517 NON CYTOPLASMIC.

11

Phobius posterior probabilities for UNNAMED 1 0.8 Posterior label probability 0.6 0.4 0.2 Ó 0 100 200 300 400 500 transmembrane cytoplasmic non cytoplasmic signal peptide

Figure 129: The Phobius posterior probability line graph generated for gene BMW92_RS10840 resulted in a calculated prediction that the whole sequence contains no membrane helices. The grey line, representative of the predicted transmembrane helices location, was around 0.001 (0.1%) posterior probability from amino acids 180-195. The green line, representative of the predicted cytoplasmic transmembrane helices location, was around 0.09 (9%) posterior

probability from amino acids 0-517. The blue line, representative of the predicted noncytoplasmic transmembrane helices location, was around 0.93 (93%) posterior probability from amino acids 0-517. The red line, representative of the presence or absence of a signal peptide, was 0.00 (0%) posterior probability (Phobius, <http://phobius.sbc.su.se>).

BMW92_RS10855

The fifth gene, BMW92 RS10855, was analyzed using bioinformatic technology. Table 5 below contains the provided data regarding basic information. A protein isoelectric point calculator was used to determine the isoelectric point of the protein, protein length, and the number and prevalence of each amino acid that makes up the protein (Figure 130). The BLASTp search tool produced 100 matches ranked from highest sequence similarity to lowest sequence similarity. The top ten sequences with significant alignments that were not identical species to Coxiella burnetii were selected. The information recorded included the organism name, protein name, percent identity, precent positive, length of alignment match, e-values, and percent gap. The highest ranked match to the BMW92 RS10855 gene was aspartate cabamoyltransferase catalytic subunit [Coxiella mudrowiae] (Figure 131). The remaining nine matches to the BMW92 RS10855 gene all had a function as aspartate cabamoyltransferase catalytic subunit (Figures 132-140). The CDD identified five potential protein domains hits conserved (Figure 141). Four of the domain hits conserved and identified by the CDD belong to the pyrB, PyrB, asp carb tr, and OTCace N superfamilies (Figure 142) Specific domain hits involved PyrB and OTCace N. Two domain hits conserved and identified as a non-specific domain hit were pyrB and asp carb tr. The protein classification identified by the CDD was aspartate cabamoyltransferase catalytic subunit. Four of the domain hits sequences were aligned with the query sequence based off the amino acids that are highly conserved between both sequences (Figures 143-146). The MUSCLE program generated a multiple sequence alignment (MSA); each amino acid in the sequence was assigned a distinct color to distinguish the amino acids being compared (Figure 147). The MUSCLE program generated two phylogenetic trees using the multiple sequence alignments to further confirm sequence similarity. The results displayed

the numbers followed behind each organism at the end of each leaf node which displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and Coxiella burnetii. The use of a phylogenetic cladogram (Figure 148) and real phylogenetic tree (Figure 149) provided further understanding of the relatedness of common ancestors and organism sequences that are conserved. Each of the letter's heights produced correspond to the conservation of the amino acid residue across similar sequences. WebLogo produced a sequence logo that was generated from the MUSCLE multiple sequence alignments of Coxiella burnetii gene BMW92 RS10855 and the top 10 organism sequences similarities selected (Figure 150). Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid. Each of the single letter amino acid abbreviation's heights correspond to the conservation of the amino acid residue across similar sequences. The T-COFEE program generated another multiple sequence alignment to further confirm sequence similarity depicted with in the MUSCLE MSA (Figure 151). The T-COFFEE program generated two phylogenetic trees, phylogenetic cladogram (Figure 152) and real phylogenetic tree (Figure 153), using the multiple sequence alignment which displayed the genetic proximity and similarity between Coxiella burnetii and selected organisms from the BLASTp search. WebLogo constructed a sequence logo from the T-COFFEE multiple sequence alignments of Coxiella burnetii gene BMW92 RS10855 and the top 10 organism sequences similarities selected to further display sequence similarity and conservation of sequences. Each of the single letter amino acid abbreviation's heights correspond to the conservation of the amino acid residue across similar sequences (Figure 154). Protein localization results included SignalP, LipoP, TMHMM, BOMP, PSORTb, and Phobius. The SignalP graphical illustration identified that there is no presence of a signal peptide for the entirety of the protein sequence (Figure 155). The

LipoP resulted in the highest scoring class being the cytoplasmic protein class (Figure 156). The TMHMM test resulted in a graphical illustration, statistics, and a list of the predicted transmembrane helices and the predicted location of the intervening loop regions. The TMHMM test resulted and displayed that the whole sequence is highly unlikely to contain any transmembrane helices and that the majority of the protein has a high probability of being located outside of the membrane (Figure 157). The BOMP test result identified there are no integral beta-barrel outer membrane proteins (Figure 158). The PSORTb test resulted in an analysis report that identified no detectable internal helices, motifs, or signal peptides; the localization scores calculated the predictable location of the protein to be cytoplasmic (Figure 159). The Phobius test resulted in a line graphical illustration that identified a low probability of transmembrane helices present; the overall result calculated by Phobius resulted in the entire protein sequence as non-cytoplasmic, which is contradictory to LipoP and PSORTb results (Figure 160).

Basic Information

Genome	Replicon	Locus Tag	Old Locus Tag			
Coxiella burnetii	NZ_CP018005	BMW92_RS10855	BMW92_10485			
Genomic	Products	Length	Start and End			
Coordinates			Position			
19682311969163	Aspartate carbamoyltransferase	933 / 310	1968231 - 1969163			
Molecular	Average	IPC Protein	Protein Length			
Weight	Isoelectric Point		0			
34944.39434 Da	8.913	8.174	312 amino acids			
Nucleotid	e Sequence	Amino Acid Sequence				
atgaatgaacttcctttacatt gcgcgaccatattgaaaaaac ttaactcagggcatggaaaaa aagggcacgtagtcgccaaa aacgcgcaactcctttgaaat atggttcttaaccctaatctta gtgaaactctttttgatacgaa gtttattttttcattgtacgcca gcagatagcaaaaacaattat gggtgacggtaatcatcaaca taatgacaataaagcaacaac gcgtcacgattattggcgata tcattaatggacggcttagtc gattggtaggcccatcgtcat cgactcgattaaaaaattcaa aacagcgacgttattgtcaca atgataattctgtcgatatcga tgacacctgaaaaattattt tatgcatccgggtcccgtcaa gatgtcgcagataaccaaca gatgtcgcagataaccaaca gatgtcgcagataaccaaca gatgtcgcagataaccaaca gatgtcgcagataaccaaca gatgtcgcagataaccaaca gatgtcgcagataaccaaca	ttattgaatatgcgctcactcac tcatccaacgggcgaattatttt aaattcggtctttgaaacattaa ttattttttgaacccagcacacg ttgcggcaaaacgtttgggcgcc aaatttcggcaataagtaaag ttaaaactttggaagcgatgggt attctgaaaatgaaaccccgga cctcaggcgtcgtcatcaacgc atccctcacaagctttaattgatt aaaccccattggaataaattgt ttcgtcattctcgcgtggcaaac acgatgggcgttccggaaattc tattgccggacaaggtcgggaa ccgaattaaaaccaagtctcctt ccttcgtttgcaaaaggaacgcc atgcttttcgcgatcattdatt ccgcaaacccgatgcattaattgt ttcgtcattctcgcgtggcaaattc tattgccggacaaggtcggaa ccgaattaaaaccaagtctcctt ccttcgtttgcaaaaggaacgcc atgcttttcgcgaaattaattct atcgtcatcctcaacagtccattgt ccgcaaaacccgatgccattgt ccgcgaagtcgaaattaattct atctgtcatccttcaacagtac atcgttgtgggaattatttttg	MNELPLHLLNMRSLTF KNSVFETLKGHVVANL AMVLNPNLKISAISKGE HSENETPEQIAKQLSSG DLMTIKQHKPHWNKL GLVTMGVPEIRLVGPS SLLNSDVIVTLRLQKER KLYSAKPDAIVMHPGP LQQVRNGVA MRMAN	RDHIEKLIQRANYFLTQGME FFEPSTRTRNSFEIAAKRLG ETLFDTIKTLEAMGVYFFIVR SVVINAGDGNHQHPSQALI CVTIIGDIRHSRVANSLMD SLLPDKVGNDSIKKFTELKP HDNSVDIDAFRGSFRLTPE VNREVEINSDVADNQQSVI /LELFLLRDFRFF			

 Table 3: Gene BMW92_RS10835 basic information

Figure 130: Protein isoelectric point calculator. The number and prevalence of each amino acid in the protein coded from the BMW92_RS10855 gene of *Coxiella burnetii* (Kozlowski, Biology Direct, http://isoelectric.org/).

Sequence Similarity

BLAST

aspartate carbamoyltransferase catalytic subunit [Candidatus Coxiella mudrowiae]

Sequence ID: <u>WP_048875734.1</u> Length: **316** Number of Matches: **1**

See 1 more title(s) See all Identical Proteins(IPG)

Range 1: 5 to 305 GenPept Graphics

Vext Match A Previou

Score		Expect	Method		Identities	Positives	Gans	
421 bits	(1081)	3e-145	5 Composition	al matrix adju	st. 201/302(67%)	248/302(82%)	1/302(0%))
Query	3	ELPLHI	LNMRSLTRDH	IEKLIQRANYF	LTQGMEKNSVFETL	KGHVVANLFFEP	STRTRNS	62
Sbjct	5	DFPYHI	LGMQSLTRNE	IF +++RAN F IDLILKRANDF	L + +++N VF+TL L-RNIKENRVFDTL	KGEVVANLFFET	STRTRNS	63
Query	63	FEIAAP	RLGAMVLNPN	LKISAISKGET	LFDTIKTLEAMGVY	FFIVRHSENETP	EQIAKQL	122
Sbjct	64	FEIAAF	(RL A+VL+P+) (RLEAIVLSPD)	LKYSALNKGES	L D + L+AMG LLDMARNLQAMGTR	FF++RH+EN P FFVIRHTENNRP	+A+ L RMLAEHL	123
Query	123	SSGVVI	INAGDGNHQHP	SQALIDLMTIK	QHKPHWNKLCVTII	GDIRHSRVANSL	MDGLVTM	182
Sbjct	124	EQGIVI	INAGDGNHQHP'	TQGLIDLMTIQ	QHKP W KLCVTII QHKPDWTKLCVTII	GDIYHSRVANSL	YDGLLIM	183
Query	183	GVPEIF	LVGPSSLLPD	KVGNDSIKKFT	ELKPSLLNSDVIVT	LRLQKERHDNSV	DIDAFRG	242
Sbjct	184	GVPEIF	(+ GPS LLP+ \ITGPSQLLPE'	TVKNPRIKKIP	ELEASLINSDVVVT	LRLQKERHSNLT	ELNTFRQ	243
Query	243	SFRLTE	PEKLYSAKPDA		VEINSDVADNQQSV	ILQQVRNGVAMR	MAVLELF	302
Sbjct	244	LFSLSA	AEKFALAKPDA	IVMHPGP+NRE	IEMTSEVADGKQSV	ILQQV+NGVA+R ILQQVQNGVAIR	MAVLEL	303
Query	303	LL 30)4					
Sbjct	304	FL 30)5					

Figure 131: BLAST first match for BMW92_RS10855 sequence from organism Coxiella

mudrowiae with an e-value of 3e-145, 67% identity, 82% positives, 0% gaps, and an identity of

aspartate cabamoyltransferase catalytic subunit (BLAST,

aspartate carbamoyltransferase catalytic subunit [Thiotrichales bacterium]

Sequence ID: MAJ10885.1 Length: 320 Number of Matches: 1

<u>See 1 more title(s)</u> ✓ <u>See all Identical Proteins(IPG)</u>

Range 1: 16 to 315 GenPept Graphics

Vext Match 🔺 Previous

Score	(7/1)	Expect	Method	Instriv	adjust	Identities	(400/)	Positives	(600/)	Gaps	
290 DIL	5(741)	26-93	Compositiona	matrix	aujust.	146/300	(49%)	207/3000	09%)	3/300(1%)	
Query	7	HLLNN H T.+-	IRSLTRDHIEK	LIQRAN	YFLTQGN F + G	IEKNSVFI +	ETLKGH	IVVANLFF V NLFF	EPSTR	TRNSFEIA	66
Sbjct	16	HFLSI	LDGLSKDLVTT	ILDHAE	FTSVGI	ERSSKKVI	PILRG	TVVNLFF	ESSTR	TRTTFELA	75
Query	67	AKRL(AMVLNPNLKI	SAISKGI	ETLFDT	KTLEAM	GVYFF]	VRHSENE	TPEQI	AKQLSSGV	126
Sbjct	76	AKRL	SADVMNINLES	SATKKGI	ESLSDTI	LKTLEAMÇ	QADMF	VRHQDSG	AAEFI	ARQVAQNI	135
Query	127	-VINA	AGDGNHQHPSQ	ALIDLM	LIKOHKI	PHWNKLC	/TIIGI	OIRHSRVA	NSLMD	GLVTMGVP	185
Sbjct	136	SVINA	AGDGSHSHPTQ	AMLDMF	FIRKHK	(TFDQLR)	/AIVGI	DIAHSRVA	RSEIH	ALQILGVP	195
Query	186	EIRL	/GPSSLLPDKV	GNDSIK	KFTELKI	SLLNSD	/IVTLF	RLQKERHD	NSV	DIDAFRGS	243
Sbjct	196	EIRL	/GP +L+P V /GPKTLIPTAV	EKLGVR	F L+ FFNSLES	GIDKAD	/I+ LF /IIMLF	RLQQERMR	SALLP	SGREFFNT	255
Query	244	FRLTI	PEKLYSAKPDA	IVMHPGI	PVNREVI	EINSDVAL		/ILQQVRN	GVAMR	MAVLELFL	303
Sbjct	256	FGLTI	(EKLRSAKSDV	IVMHPG	PINRGI	EIDSKVAL	DSPES	/ILQQV +	GIAVR	MAVMSLTM	315

Figure 132: BLAST second match for BMW92_RS10855 sequence from organism

Thiotrichales bacterium with an e-value of 2e-93, 49% identity, 69% positives, 1% gaps, and an

identity of aspartate cabamoyltransferase catalytic subunit (BLAST,

aspartate carbamoyltransferase catalytic subunit [Leucothrix arctica]

Sequence ID: <u>WP_109824656.1</u> Length: 331 Number of Matches: 1

<u>See 1 more title(s)</u> <u>See all Identical Proteins(IPG)</u>

Range 1: 24 to 323 GenPept Graphics

Vext Match A Previou

Score		Expect Method	Identities	Positives	Gaps	
289 bits	s(739)	5e-93 Compositional matrix adjust.	147/300(49%)	206/300(68%)	3/300(1%)	
Query	7	HLLNMRSLTRDHIEKLIQRANYFLTQG H L++ L R+ + +++ RA F+T	MEKNSVFETLKGH + F L+G	IVVANLFFEPSTR V NLFFE STR	TRNSFEIA TR +FE+A	66
Sbjct	24	HFLSIEGLPREMLVEILDRAEQFVTLP	NKAQKKFPLLRG	TVMNLFFENSTR	TRMTFELA	83
Query	67	AKRLGAMVLNPNLKISAISKGETLFDT	IKTLEAMGVYFFI	VRHSENETPEQI	AKQLSSGV	126
Sbjct	84	AQRLSADVVNLDIRNSSASKGESLLDT	IRNLEAMNCDVF	VRHHHSSAPHFI	AKYCAPHI	143
Query	127	-VINAGDGNHQHPSQALIDLMTIKQHK	PHWNKLCVTIIGI	DIRHSRVANSLMD	GLVTMGVP	185
Sbjct	144	SVLNAGDGYHEHPSQAMLDMLTIRQHK	PDFSKLTVAITGI	DIRHSRVARSEIQ	ALKTLGAK	203
Query	186	EIRLVGPSSLLPDKVGNDSIKKFTELK	PSLLNSDVIVTLE	RLQKERHDNSV	DIDAFRGS	243
Sbjct	204	EIRTT P TLTP T TK FT TT EIRVIAPGTLMPVGIEELGVKVFTSME	EGLVDADVVVML	RLQKER ++ RLQKERMQGAMLP	FSEQEYFSL	263
Query	244	FRLTPEKLYSAKPDAIVMHPGPVNREV	EINSDVADNQQSV	/ILQQVRNGVAMR	MAVLELFL	303
Sbjct	264	YGLTEQRLTLAKPDAIVMHPGPVNRV	EIASSVADGPQS	/IHQQVTNGIAVR	MAVMSMVM	323

Figure 133: BLAST third match for BMW92_RS10855 sequence from organism Leucothrix

arctica with an e-value of 5e-93, 49% identity, 68% positives, 1% gaps, and an identity of

aspartate cabamoyltransferase catalytic subunit (BLAST,

aspartate carbamoyltransferase catalytic subunit [Alteromonadaceae bacterium]

Vext Match 🔺 Previo

Sequence ID: MAL98818.1 Length: 337 Number of Matches: 1

Range	1:	22	to	321	<u>GenPept</u>	Graphics
-------	----	----	----	-----	----------------	----------

Score		Expect Method	Identities	Positives	Gaps	
288 bits	(737)	1e-92 Compositional matrix adjust.	148/300(49%)	204/300(68%)	3/300(1%)	
Query	7	HLLNMRSLTRDHIEKLIQRANYFLTQG H L + L RD + +++ A+ F+ G	AEKNSVFETLKGE	IVVANLFFEPSTR V NLFFEPSTR	TRNSFEIA	66
Sbjct	22	HFLTIDGLGRDLLTEILDTADSFIEVG	ERRIKKVPLLRGF	TVVNLFFEPSTR	TRSTFELA	81
Query	67	AKRLGAMVLNPNLKISAISKGETLFDT AKRL A VLN ++ SA SKGE+L DT-	IKTLEAMGVYFFI + LEAM F+	VRHSENETPEQI	AKQLSSGV A+ ++ GV	126
Sbjct	82	AKRLSADVLNLDISKSATSKGESLSDTI	LINLEAMASDMFV	VRHAQSGAAHFI	ARSVTPGV	141
Query	127	-VINAGDGNHQHPSQALIDLMTIKQHKI +INAGDG H HP+OA++D++TI+OHK	PHWNKLCVTIIGE + L V T+GE) IRHSRVANSLMD)T HSRVA S ++	GLVTMGVP	185
Sbjct	142	AIINAGDGRHAHPTQAMLDMLTIRQHKI	ERFEGLRVAIVGE	ILHSRVARSQVN	ALLTLGAE	201
Query	186	EIRLVGPSSLLPDKVGNDSIKKFTELKI E+RLVGP++L+P +K T ++	SLLNSDVIVTLF L ++DVI+ LF	RLQKERHDNSV RLOKER ++ +	DIDAFRGS F	243
Sbjct	202	EVRLVGPATLMPAAANQLGVKLCTTMEI	EGLADTDVIIMLE	LQKERMESGLLP	SEREFFKL	261
Query	244	FRLTPEKLYSAKPDAIVMHPGPVNREVI + LT EKL AKPDAIVMHPGP+NR VI	EINSDVADNQQSV EI S VAD OSV	/ILQQVRNGVAMR /IL OV NG+A+R	MAVLELFL MAV+ + +	303
Sbjct	262	YGLTREKLALAKPDAIVMHPGPINRGVI	EIESAVADGPÕSV	ILSQVTNGIALR	MAVMSMAM	321

Figure 134: BLAST fourth match for BMW92_RS10855 sequence from organism

Alteromonadaceae bacterium with an e-value of 1e-92, 49% identity, 68% positives, 1% gaps,

and an identity of aspartate cabamoyltransferase catalytic subunit (BLAST,

aspartate carbamoyltransferase catalytic subunit [Hydrocarboniclastica marina]

Sequence ID: <u>WP_136546159.1</u> Length: 337 Number of Matches: 1 <u>See 1 more title(s)</u> ➤ <u>See all Identical Proteins(IPG)</u>

Range 1: 22 to 321 GenPept Graphics

Vext Match 🔺 Previo

Score		Expect Method	Identities	Positives	Gaps	
287 bits	s(735)	3e-92 Compositional matrix adjust.	148/300(49%)	203/300(67%)	3/300(1%)	
Query	7	HLLNMRSLTRDHIEKLIQRANYFLTQG H L + L RD + +++ A+ F+ G	MEKNSVFETLKGE + L+G	IVVANLFFEPSTR V NLFFEPSTR	TRNSFEIA	66
Sbjct	22	HFLTIDGLGRDLLTEILDTADSFIEVG	ERRIKKVPLLRGF	TVVNLFFEPSTR	TRSTFELA	81
Query	67	AKRLGAMVLNPNLKISAISKGETLFDT AKRL A VLN ++ SA SKGE+L DT	IKTLEAMGVYFFI + LEAM F+	VRHSENETPEQI -VRH+++ T	AKQLSSGV A+ ++ GV	126
Sbjct	82	AKRLSADVLNLDISKSATSKGESLSDT	LINLEAMASDMEV	VRHAQSGAAHFI	ARSVTPGV	141
Query	127	-VINAGDGNHQHPSQALIDLMTIKQHK +INAGDG H HP+OA++D++TI+OHK	PHWNKLCVTIIGE + L V I+GE) IRHSRVANSLMD)I HSRVA S ++	GLVTMGVP	185
Sbjct	142	AIINAGDGRHAHPTQAMLDMLTIRQHKI	ERFEGLRVAIVG	ILHSRVARSQVN	ALLTLGAE	201
Query	186	EIRLVGPSSLLPDKVGNDSIKKFTELK E+RLVGP++L+P +K T ++	PSLLNSDVIVTLF L +DVI+ LF	RLQKERHDNSV RLOKER ++ +	DIDAFRGS F	243
Sbjct	202	EVRLVGPATLMPAAANQLGVKLCTTME	EGLAETDVIIMLF	RLÕKERMESGLLP	SEREFFKL	261
Query	244	FRLTPEKLYSAKPDAIVMHPGPVNREV + LT EKL AKPDAIVMHPGP+NR V	EINSDVADNQQSV EI S VAD OSV	/ILQQVRNGVAMR /IL OV NG+A+R	MAVLELFL MAV+ + +	303
Sbjct	262	YGLTREKLALAKPDAIVMHPGPINRGV	EIESAVADGPÕSV	VILSQVTNGIALR	MAVMSMAM	321

Figure 135: BLAST fifth match for BMW92 RS10855 sequence from organism

Hydrocarboniclastica marina with an e-value of 3e-92, 49% identity, 67% positives, 1% gaps,

and an identity of aspartate cabamoyltransferase catalytic subunit (BLAST,

aspartate carbamoyltransferase catalytic subunit [Gammaproteobacteria bacterium]

Vext Match 🔺 Previo

Sequence ID: MAR77762.1 Length: 315 Number of Matches: 1

Range	1:	17	to	312	<u>GenPept</u>	Graphics
-------	----	----	----	-----	----------------	-----------------

Score		Expect N	1ethod			Identities		Positive	S	Gaps	
286 bit	s(731)	4e-92 (Compositior	nal matrix	x adjust.	145/299	(48%)	207/29	99(69%)	5/299(1%))
Query	7	HLLNMF	SLTRDHIE	KLIQRAN	NYFLTQG	MEKNSVF	ETLKGE	IVVANL VA+T.	FFEPST	RTRNSFEIA	66
Sbjct	17	HFLNIE	SNLTKRHIN	DILNLA	OKFAS	-DKNKKF	KNLEGR	TVASL	FFEPST	RTKTTFELA	73
Query	67	AKRLGA	MVLNPNLK	ISAISKO	GETLFDT	IKTLEAM	GVYFFI F4	VRHSE	NETPEQ	IAKQLSSGV TAK++ +	126
Sbjct	74	SKRLSA	DFINIDIA	NSSTLK	GESIIDM	IKTLEAM	QCDMFV	VRHAN	SGTPHE	IAKEVDQKI	133
Query	127	-VINAC	DGNHQHPS	QALIDLN OA++D+	ITIKQHK TIK++K	PHWNKLC	VTIIGI V+I+GI	IRHSR	VANSLM	DGLVTMGVP L + V	185
Sbjct	134	AVINAC	DGTYAHPS	QAMLDMY	TIKKYK	GGFNNLK	VSIVGI	ILHSR	VAKSLI	CSLKILCVD	193
Query	186	EIRLVO EI ++O	PSSLLPDK P +L+PD	VGNDSI	KETELK F +L+	PSLLNSD + NSD	VIVTLF VI+ LF	LOKER	-HDNSV	DIDAFRGSF + + +	244
Sbjct	194	EINIIC	SPENLMPDN	KDVLGVI	NYFFDLE	EGISNSD	VIIMLF	LQKER	MHDALI	STNDYYKKY	253
Query	245	RLTPEH LT +H	(LYSAKPDA (L +AK D	IVMHPGI IVMHPGI	PVNREVE P+NR +E	INSDVAD	NQQSVI SVI	LQQVR	NGVAMRI +G+++RI	MAVLELFL MA++ L L	303
Sbjct	254	GLTSK	(LLAAKKDV	IVMHPGI	PINRGIE	IDSDVAD	GSNSVI	LDQVS	SGISIR	MAIMSLLL	312

Figure 136: BLAST sixth match for BMW92 RS10855 sequence from organism

Gammaproteobacteria bacterium with an e-value of 4e-92, 48% identity, 69% positives, 1%

gaps, and an identity of aspartate cabamoyltransferase catalytic subunit (BLAST,

aspartate carbamoyltransferase catalytic subunit [Oceanococcus atlanticus]

Sequence ID: <u>WP_083561731.1</u> Length: **319** Number of Matches: **1**

See 2 more title(s) See all Identical Proteins(IPG)

Range 1: 13 to 312 GenPept Graphics

Vext Match 🔺 Previo

Score		Expect	Method			Identitie	S	Positives		Gaps	
284 bits	(726)	4e-91	Composition	nal matrix	adjust.	148/30	0(49%)	198/30	0(66%)	3/300(1%)	
Query	7	HLLNM HLL M	IRSLTRDHIE 1+ L+ D+I	KLIQRAN ++ RA	YFLTQG F++	MEKNSV	FETLKGH LKG	IVVANLF + NLF	FEPSTR FE STR	TRNSFEIA TR++FE+A	66 72
Sujee	13	пппть	IQGUSADITII	SILDKAL	51 V 551	GOGENI	SALLING		LUNDIN	I KOAF ELIA	12
Query	67	AKRLO KRL	GAMVLNPNLK A VLN ++	ISAISKG S+ SKG	ETLFDT	IKTLEAI +KTLEAI	MGVYFFI M V FI	VRHSEN	ETPEQI + I	AKQLSSGV A O+ GV	126
Sbjct	73	GKRLS	SADVLNMDVA	TSSTSKG	ETLLDT	LKTLEAI	MDVDMF1	VRHHAS	GAAQFI	ANQVRPGV	132
Query	127	-VINA V+NA	AGDGNHQHPS AGDG H HP+	QALIDLM OAL+D+	TIKQHK TI++HK	PHWNKL(P + L	CVTIIGI V I+GI	DIRHSRV	ANSLMD	GLVTMGVP L +GV	185
Sbjct	133	AVLNA	AGDGRHAHPT	QALLDVF	TIRRHK	PDFASL	SVAIVGI	DILHSRV	ARSEIR	ALRALGVR	192
Query	186	EIRL\ ++R++	/GPSSLLPDK -GPS+LLP	VGNDSIK + +	KFTELK	PSLLNSI	DVIVTLE	RLQKERH	DNSV	DIDAFRGS D F	243
Sbjct	193	DLRVI	GPSTLLPSG	LAELGAQ	PETDMD	RGIEGAI	DVIIMLF	RLQKERM	SGHFLP	SADEFYQR	252
Query	244	FRLTE	EKLYSAKPD	AIVMHPG A+VMHPG	PVNREV	EINSDVA		ILQQVR	NGVAMR +GVA+B	MAVLELFL	303
Sbjct	253	YGLTÇ	SRLAGARAD	ALVMHPG	PINRGV	EIESRV	ADGPQSV	VILQQVN	HGVAVR	MAIMSMIL	312

Figure 137: BLAST seventh match for BMW92_RS10855 sequence from organism

Oceanococcus atlanticus with an e-value of 4e-91, 49% identity, 66% positives, 1% gaps, and an

identity of aspartate cabamoyltransferase catalytic subunit (BLAST,

aspartate carbamoyltransferase catalytic subunit [Hahellaceae bacterium]

Sequence ID: MAM87066.1 Length: 323 Number of Matches: 1

Range 1: 11 to 310 GenPept Graphics

Vext Match 🔺 Previous

Score		Expect Method	Identities	Positives	Gaps	
283 bits	(725)	5e-91 Compositional matrix adjust.	147/300(49%)	203/300(67%)	3/300(1%)	
Query	7	HLLNMRSLTRDHIEKLIQRANYFLTQG HLL + L+ + I +++ A F+ G	MEKNSVFETLKGI L+G	IVVANLFFEPSTR VA LFFEPSTR	TRNSFEIA TR +FE+A	66
Sbjct	11	HLLTLDGLSGELISQVLDTAESFIEVG	SRSIKKVPLLRGI	TVATLFFEPSTR	TRTTFELA	70
Query	67	AKRLGAMVLNPNLKISAISKGETLFDT AKRL A VLN N+ SA SKGE+L D	IKTLEAMGVYFFI ++ LEAM V F-	IVRHSENETPEQI VRH+ + I	AKQLSSGV A++++ V	126
Sbjct	71	AKRLSADVLNINISSSATSKGESLSDM	LRNLEAMAVDMF	/VRHASSGAAHFI	AREVTPEV	130
Query	127	-VINAGDGNHQHPSQALIDLMTIKQHK ++NAGDG H HP+OAL+D++TI+O+K	PHWNKLCVTIIGI P + L V IIGI) DIRHSRVANSLMD DI HSRVA S +	GLVTMGVP L +GV	185
Sbjct	131	AIVNAGDGQHAHPTQALLDMLTIRQYK	PDFPSLSVAIIG	DILHSRVARSEIA	ALRALGVK	190
Query	186	EIRLVGPSSLLPDKVGNDSIKKFTELK +IR+VGP +LLP V + +++ +	PSLLNSDVIVTLI L +DVI+TLI	RLQKERHDNSV RLOKER S+	DIDAFRGS F	243
Sbjct	191	DIRVVGPDTLLPMAVESFGVRRCNRMS	EGLDGADVIITLE	RLQKERMSGSLLP	SEHEFYSL	250
Query	244	FRLTPEKLYSAKPDAIVMHPGPVNREV + LT +KL +AK DAI+MHPGP+NR V	EINSDVADNQQSV EI S VAD+++SV	/ILQQVRNGVAMR /IL+QV NG+A+R	MAVLELFL MAVL + +	303
Sbjct	251	YGLTTDKLATAKADAIIMHPGPINRGV	EIESAVADSERSV	/ILEQVTNGIAVR	MAVLSMVM	310

Figure 138: BLAST eighth match for BMW92 RS10855 sequence from organism Hahellaceae

bacterium with an e-value of 5e-91, 49% identity, 67% positives, 1% gaps, and an identity of

aspartate cabamoyltransferase catalytic subunit (BLAST,

aspartate carbamoyltransferase catalytic subunit [Pseudolysobacter antarcticus]

Sequence ID: WP_129835034.1 Length: 315 Number of Matches: 1

See 1 more title(s)
See all Identical Proteins(IPG)

Range 1: 14 to 313 GenPept Graphics

Vext Match 🔺 Previou

Casta		Evreet Method Ide	un hibi e e	Desitives	Cana	
Score	(Expect Method Ide		Positives	Gaps	
283 bits	\$(723)	8e-91 Compositional matrix adjust. 14	//301(49%)	198/301(65%)	5/301(1%)	
Query	7	HLLNMRSLTRDHIEKLIQRANYFLTQGMEK HLL + L R +E L+ RA	NSVFETLKGH + L G	VVANLFFEPSTR V NLFFEPSTR	TRNSFEIA TR SF++A	66
Sbjct	14	HLLTLEGLPRATLEHLLDRAEQLRALSHNG	TRRLDLLNGR	TVINLFFEPSTR	TRTSFDLA	73
Query	67	AKRLGAMVLNPNLKISAISKGETLFDTIKT AKRLGA V+N ++ S+ KGETL DT+ T	LEAMGVYFFI LEAM F+	VRHSENETPEQI VRH E+ TPE I	AKQL-SSG A+ L S+	125
Sbjct	74	AKRLGADVINFDIASSSTVKGETLLDTVHT	LEAMHCDAFV	VRHKESGTPEFI	ARHLRSNC	133
Query	126	VVINAGDGNHQHPSQALIDLMTIKQHKPHW V+NAGDGN HP+Q L+D +T+ +H+ +	NKLCVTIIGD +++LCV I GD	IRHSRVANSLMD IRHSRVA S +	GLVTMGVP L T+G+	185
Sbjct	134	AVLNAGDGNRAHPTQGLLDALTLLRHRADF	SQLCVVICGD	IRHSRVARSDVH	ALRTLGIG	193
Query	186	EIRLVGPSSLLPDKVGNDSIKKFTELKPSL E+RL P SLLPD F++ +L	LNSDVIVTLR - +D ++ LR	LQKERHDNSV LQKER + ++	-DIDAFRG + + FR	242
Sbjct	194	ELRLCAPESLLPDAAEMPGCLLFSDFDAAL	RGADAVIMLR	LQKERMEGALIP	SEAEYFR-	252
Query	243	SFRLTPEKLYSAKPDAIVMHPGPVNREVEI F L+ E+L A PD +VMHPGP+NR+VEI	NSDVADNQQS +DVAD +S	VILQQVRNGVAM +IL+QV NGV +	RMAVLELF RMAVL+	302
Sbjct	253	RFGLSSERLAQAAPDCLVMHPGPINRDVEI	AADVADGPRS	LILEQVGNGVFI	RMAVLQEL	312
Query	303	L 303 L				
Sbjct	313	L 313				

Figure 139: BLAST ninth match for BMW92_RS10855 sequence from organism

Pseudolysobacter antarcticus with an e-value of 8e-91, 49% identity, 65% positives, 1% gaps,

and an identity of aspartate cabamoyltransferase catalytic subunit (BLAST,

aspartate carbamoyltransferase catalytic subunit [Pseudomonas sabulinigri]

Sequence ID: <u>WP_092287351.1</u> Length: **331** Number of Matches: **1** <u>See 1 more title(s)</u> **>** <u>See all Identical Proteins(IPG)</u>

Range 1: 18 to 317 GenPept Graphics

Vext Match 🔺 Previou

Score		Expect	Method		Identities	Positives	Gaps	
283 bits	6(724)	1e-90	Compositiona	al matrix adju	st. 144/300	(48%) 202/300)(67%) 3/300	(1%)
Query	7	HLLNI H L -	ARSLTRDHIEK	LIQRANYFLT L+ A+ FL	QGMEKNSVFE G	TLKGHVVANLF	FEPSTRTRNSF FE STRTR +F	'EIA 66 'E+A
Sbjct	18	HFLT:	IEGLSRELLTE	LLDTADSFLE	VGERAVKKVF	LLRGKTVCNVF	FENSTRTRTTF	ELA 77
Query	67	AKRLO	GAMVLNPNLKI A VI.N N+	SAISKGETLF	DTIKTLEAMO DT++ LEAM	VYFFIVRHSEN F+VRH ++	ETPEQIAKQLS TA+++	SGV 126
Sbjct	78	AKRL	SADVLNLNIST	SSTSKGETLY	DTLQNLEAMA	ADMFVVRHGDS	GAAHFIAERVO	PDV 137
Query	127	-VINA VINA	AGDGNHQHPSQ AGDGNH HP+O	ALIDLMTIKQ A++D++TI++	HKPHWNKLCV H+ + KL V	TIIGDIRHSRV 1+GDI HSRV	ANSLMDGLVTM A S M L T+	IGVP 185 -G P
Sbjct	138	AVINA	AGDGNHAHPTQ	AMLDMLTIRR	HRGDFEKLSV	AIVGDILHSRV	ARSNMQALKTI	GCP 197
Query	186	EIRLV +IR+-	/GPSSLLPDKV + P +LLP+ +	GNDSIKKFTE	LKPSLLNSDV L+ L + DV	/IVTLRLQKERH	DNSVDIDAF + + F	RGS 243
Sbjct	198	DIRV	IAPRTLLPEGI	DQYGVRVFND	LRVGLRDVDV	VIMLRLÕKERM	QSGLLPSEGEF	YKL 257
Query	244	FRLTI + LT	PEKLYSAKPDA E L AKPDA	IVMHPGPVNR +VMHPGP+NR	EVEINSDVAD VEI S+VAD	NQQSVILQQVR OSVIL+QV	NGVAMRMAVLE G+A+RMAV+	LFL 303
Sbjct	258	YGLTI	RETLALAKPDA	LVMHPGPINR	GVEIESEVAL)GPQSVILKQVT	YGIAVRMAVMS	MAM 317

Figure 140: BLAST tenth match for BMW92_RS10855 sequence from organism Pseudomonas

sabulinigri with an e-value of 1e-90, 48% identity, 67% positives, 1% gaps, and an identity of

aspartate cabamoyltransferase catalytic subunit (BLAST,

Figure 141: BLAST graphic summary of the top 10 organism sequences similarities selected aligned with *Coxiella burnetii* query sequence of gene BMW92_RS10855. Each of the alignment sequences selected are order from highest sequence similarity (top) to lowest sequence similarity (bottom). All organism sequences aligned with the query sequence have an alignment score of greater than 200 (BLAST, https://blast.ncbi.nlm.nih.gov/Blast.cgi).

CDD

Figure 142: Conserved Domain Database output results for gene BMW92_RS10855. The top domain hit match was pyrB: aspartate carbamoyltransferase which aligned with the query sequence from amino acid residues 1-310 and had statistically significant e-value of 0e+00. The second domain hit match was PyrB: aspartate carbamoyltransferase which aligned with the query sequence from amino acid residues 7-303 and had a statistically significant e-value of 8e-121. The third domain hit match was asp_carb_tr: aspartate carbamoyltransferase which aligned with the query sequence from amino acid residues 7-304 and had a statistically significant e-value of 5.28e-91. The fourth domain hit match was OTCace_N: aspartate carbamoyltransferase which aligned with the query sequence from amino acid residues 7-150 and had a statistically significant e-value of 8.88e-53 (BLAST, https://blast.cgi).

Figure 143: The first domain hit sequence pyrB: aspartate carbamoyltransferase aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 1-310 and had a statistically significant e-value of 0e+00 (BLAST,

Figure 144: The second domain hit sequence PyrB: aspartate carbamoyltransferase aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 7-303 and had a statistically significant e-value of 8e-121 (BLAST,

Figure 145: The third domain hit sequence asp_carb_tr: aspartate carbamoyltransferase (ATCase) aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 7-304 and had a statistically significant e-value of 5.28e-91 (BLAST, https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Figure 146: The fourth domain hit sequence OTCace_N: Aspartate/ornithine carbamoyltransferase aligned with the query sequence. The amino acid residues had an aligned interval from amino acids 7-150 and had a statistically significant e-value of 8.88e-53 (BLAST, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

MUSCLE

C.burnetii	MNELPL	HLLNMRSLTRDHI	EKLIQRANYFLTQGM	KNSVFETL
C.mudrowiae	MVKKDFPY	HLLGMQSLTRNEI	DLILKRANDFLR-NI	ENRVFDTL
P.antarcticus	MPOPOLDEHGRLR	HLLTLEGLPRATL	EHLLDRAEQLRALSH	IGTRRLDLL
G.bacterium	MVIDNNIQFDKNNKLK	HFLNIENLTKRHI	NDILNLADKFASI	KNKKFKNL
0.atlanticus	MNPQIDEHGQFR	HLLTMQGLSADNI	HSILDRAESFVSSPG	GPRTSAEL
L.arctica	MKSKLVPGPLPSSIQLSEDGQLK	HFLSIEGLPREML	VEILDRAEQFVTLPNH	AOKKFPLL
T.bacterium	MGSONIOLDOTGKLK	HFLSIDGLSKDLV	TTILDHAETFTSVGE	RSSKKVPIL
H.bacterium	MQLNEAGELK	HLLTLDGLSGELI	SQVLDTAESFIEVGSF	RSIKKVPLL
P.sabulinigri	MSQTPHHLQLNHQGQLR	HFLTIEGLSRELL'	TELLDTADSFLEVGE	RAVKKVPLL
A.bacterium	MNQGIKAISPGLQLTSGGQLK	HFLTIDGLGRDLL'	TEILDTADSFIEVGER	RRIKKVPLL
H.marina	MNQGIKAISPGLQLTSGGQLK	HFLTIDGLGRDLL	TEILDTADSFIEVGER	RRIKKVPLL
		: : .* :	::. *: :	*
- 1				
C.burnetii	KGHVVANLFFEPSTRTRNSFEIA	AKRLGAMVLNPNL	KISAISKGETLFDTIK	TLEAMGVY
C.mudrowiae	KGEVVANLFFETSTRTRNSFEIA	AKRLEAIVLSPDL	KVSALNKGESLLDMAF	RNLQAMGTR
P.antarcticus	NGRTVINLFFEPSTRTRTSFDLA	AKRLGADVINFDI	ASSSTVKGETLLDTVF	TLEAMHCD
G.bacterium	EGKTVASLFFEPSTRTKTTFELA	SKRLSADFINIDI	ANSSTLKGESIIDMIK	KTLEAMQCD
0.atlanticus	KGRTIVNLFFEASTRTRSAFELA	GKRLSADVLNMDV	ATSSTSKGETLLDTL	(TLEAMDVD
L.arctica	RGKTVMNLFFENSTRTRMTFELA	AQRLSADVVNLDI	RNSSASKGESLLDTIF	RNLEAMNCD
T.bacterium	RGKTVVNLFFESSTRTRTTFELA	AKRLSADVMNINL	ESSATKKGESLSDTL	TLEAMQAD
H.bacterium	RGKTVATLFFEPSTRTRTTFELA	AKRLSADVLNINI	SSSATSKGESLSDMLF	RNLEAMAVD
P.sabulinigri	RGKTVCNVFFENSTRTRTTFELA	AKRLSADVLNLNI	STSSTSKGETLYDTLÇ	2NLEAMAAD
A.bacterium	RGRTVVNLFFEPSTRTRSTFELA	AKRLSADVLNLDI	SKSATSKGESLSDTLI	INLEAMASD
H.marina	RGRTVVNLFFEPSTRTRSTFELA	AKRLSADVLNLDI	SKSATSKGESLSDTLI	JNLEAMASD
	* .: .:*** ****. :*::*	* * *	*: ***:: *	.*:**
C.burnetii	FFIVRHSENETPEQIAKQLSSGV	-VINAGDGNHQHP	SQALIDLMTIKQHKPH	WNKLCVTI
C.mudrowiae	FFVIRHTENNRPRMLAEHLEQGI	-VINAGDGNHQHP	TQGLIDLMTIQQHKPI	WTKLCVTI
P.antarcticus	AFVVRHKESGTPEFIARHLRSNC	AVLNAGDGNRAHP'	TQGLLDALTLLRHRAI	FSQLCVVI
G.bacterium	MFVVRHANSGTPHFIAKEVDQKI	AVINAGDGTYAHP	SQAMLDMYTIKKYKGC	GFNNLKVSI
0.atlanticus	MFIVRHHASGAAQFIANQVRPGV	AVLNAGDGRHAHP	TQALLDVFTIRRHKP	FASLSVAI
L.arctica	VFVVRHHHSSAPHFIAKYCAPHI	SVLNAGDGYHEHP:	SQAMLDMLTIRQHKPI	FSKLTVAI
T.bacterium	MFVVRHQDSGAAEFIARQVAQNI	SVINAGDGSHSHP	FQAMLDMFTIRKH KKT	FDQLRVAI
H.bacterium	MFVVRHASSGAAHFIAREVTPEV	AIVNAGDGQHAHP	FQALLDMLTIRQYKPI	FPSLSVAI
P.sabulinigri	MFVVRHGDSGAAHFIAERVCPDV	AVINAGDGNHAHP	FQAMLDMLTIRRHRGI	FEKLSVAI
A.bacterium	MFVVRHAQSGAAHFIARSVTPGV	AIINAGDGRHAHP	FQAMLDMLTIRQHKE F	RFEGLRVAI
H.marina	MFVVRHAQSGAAHFIARSVTPGV	AIINAGDGRHAHP	FQAMLDMLTIRQHKE F	RFEGLRVAI
	*::** • • • **	******	**************	: * * *
C.burnetii	TGDTRHSRVANSLMDGLVTMGVP	ETRLVGPSSLLPD	KVGNDSTKKFTELKP	SLUNSDVTV
C. mudrowiae	ICDIVHSRVANSLVDGLLIMGVP	ETRITCPSOLLPE	TVKNDRIKKIDELEA	SLINSDVVV
P.antarcticus	CGDTRHSRVARSDVHALRTLGTG	ELRICAPESLIPD	AAEMPGCLLESDEDA	ALRGADAVT
C bacterium	VGDILHSRVAKSLICSLKILCVD	ETNT COENLMOD	NKDVLCVNYFFDLFF(TSNSDVTT
0.atlanticus	VGDTLHSRVARSETRALRALCVR	DLRVIGPSTLLPS		TEGADVII
Larctica	TGDIRHSRVARSETOALKTLGAK	ETRVTAPCTT.MDV/	GTEELGVKVFTSMFF(
T.bacterium	VGDIAHSRVARSETHALOTLOV	ETRLVCPKTT.TDT	AVEKI.GVRTFNSI.FS(
H.bacterium	TGDTLHSRVARSETAALRALCVK	DTRVVGPDTT.T.DM	AVESTOVRRONRMSE	
P.sabuliniari	VGDILHSRVARSNMOALKTLCCP		GTDOVGVRVFNDL PV(
A.bacterium	VGDILHSRVARSOVNALLTLGAR	EVRLUCPATIMDA	AANOLGVKI.CTTMEE	
H.marina	VGDTLHSRVAROUVNALLTUGAE	EVRLUCPATIMDA	AANOLGVKLCTTMEEC	
	*** ***** • * •	**** ***		* * *
			• •	

C.burnetii	TLRLQKERHDNSVDIDAFRGSFRLTPEKLYSAKPDAIVMHPGPVNREVEINSDVADNQ
C.mudrowiae	${\tt TLRLQKERHSNLTELNTFRQLFSLSAEKFALAKPDAIVMHPGPINREIEMTSEVADGK}$
P.antarcticus	${\tt MLRLQKERMEGALIPSEAEYFRRFGLSSERLAQAAPDCLVMHPGPINRDVEIAADVADGP}$
G.bacterium	${\tt MLRLQKERMHDALI-STNDYYKKYGLTSKKLLAAKKDVIVMHPGPINRGIEIDSDVADGS}$
0.atlanticus	${\tt MLRLQKERMSGHFLPSADEFYQRYGLTQSRLAGARADALVMHPGPINRGVEIESRVADGP}$
L.arctica	${\tt MLRLQKERMQGAMLPSEQEYFSLYGLTEQRLTLAKPDAIVMHPGPVNRGVEIASSVADGP}$
T.bacterium	${\tt MLRLQQERMRSALLPSGREFFNTFGLTKEKLRSAKSDVIVMHPGPINRGIEIDSKVADSP}$
H.bacterium	${\tt TLRLQKERMSGSLLPSEHEFYSLYGLTTDKLATAKADAIIMHPGPINRGVEIESAVADSE}$
P.sabulinigri	${\tt MLRLQKERMQSGLLPSEGEFYKLYGLTRETLALAKPDALVMHPGPINRGVEIESEVADGP}$
A.bacterium	${\tt MLRLQKERMESGLLPSEREFF} {\tt KLYGLTREKLALAKPDAIVMHPGPINRGVEIESAVADGP}$
H.marina	${\tt MLRLQKERMESGLLPSEREFF} {\tt KLYGLTREKLALAKPDAIVMHPGPINRGVEIESAVADGP}$
	****:** : : *: . : * * ::****:** :*: : ***.
C.burnetii	QSVILQQVRNGVAMRMAVLELFLLRDFRFF
C.burnetii C.mudrowiae	QSVILQQVRNGVAMRMAVLELFLLRDFRFF QSVILQQVQNGVAIRMAVLELLFLAAQDPNLIHHQ
C.burnetii C.mudrowiae P.antarcticus	QSVILQQVRNGVAMRMAVLELFLLRDFRFF QSVILQQVQNGVAIRMAVLELLFLAAQDPNLIHHQ RSLILEQVGNGVFIRMAVLQELLGK
C.burnetii C.mudrowiae P.antarcticus G.bacterium	QSVILQQVRNGVAMRMAVLELFLLRDFRFF QSVILQQVQNGVAIRMAVLELLFLAAQDPNLIHHQ RSLILEQVGNGVFIRMAVLQELLGK NSVILDQVSSGISIRMAIMSLLLENK
C.burnetii C.mudrowiae P.antarcticus G.bacterium O.atlanticus	QSVILQQVRNGVAMRMAVLELFLLRDFRFF QSVILQQVQNGVAIRMAVLELLFLAAQDPNLIHHQ RSLILEQVGNGVFIRMAVLQELLGK NSVILDQVSSGISIRMAIMSLLENK QSVILQQVNHGVAVRMAIMSMILGQSGARR
C.burnetii C.mudrowiae P.antarcticus G.bacterium O.atlanticus L.arctica	QSVILQQVRNGVAMRMAVLELFLLRDFRFF QSVILQQVQNGVAIRMAVLELLFLAAQDPNLIHHQ RSLILEQVGNGVFIRMAVLQELLGK NSVILDQVSSGISIRMAIMSLLLENK QSVILQQVNHGVAVRMAIMSMILGQSGARR QSVIMQQVTNGIAVRMAVMSMVMGSQSKGLS
C.burnetii C.mudrowiae P.antarcticus G.bacterium O.atlanticus L.arctica T.bacterium	QSVILQQVRNGVAMRMAVLELFLLRDFRFF QSVILQQVQNGVAIRMAVLELLFLAAQDPNLIHHQ RSLILEQVGNGVFIRMAVLQELLGK NSVILDQVSSGISIRMAIMSLLLENK QSVILQQVNHGVAVRMAIMSMILGQSGARR QSVILQQVTHGIAVRMAVMSMVMGSQSKGLS ESVILQQVTHGIAVRMAVMSLTMGASVT
C.burnetii C.mudrowiae P.antarcticus G.bacterium O.atlanticus L.arctica T.bacterium H.bacterium	QSVILQQVRNGVAMRMAVLELFLLRDFRFF QSVILQQVQNGVAIRMAVLELLFLAAQDPNLIHHQ RSLILEQVGNGVFIRMAVLQELLGK
C.burnetii C.mudrowiae P.antarcticus G.bacterium O.atlanticus L.arctica T.bacterium H.bacterium P.sabulinigri	QSVILQQVRNGVAMRMAVLELFLLRDFRFF QSVILQQVQNGVAIRMAVLELLFLAAQDPNLIHHQ RSLILEQVGNGVFIRMAVLQELLGK
C.burnetii C.mudrowiae P.antarcticus G.bacterium O.atlanticus L.arctica T.bacterium H.bacterium P.sabulinigri A.bacterium	QSVILQQVRNGVAMRMAVLELFLLRDFRFF QSVILQQVQNGVAIRMAVLELLFLAAQDPNLIHHQ RSLILEQVGNGVFIRMAVLQELLGK
C.burnetii C.mudrowiae P.antarcticus G.bacterium O.atlanticus L.arctica T.bacterium H.bacterium P.sabulinigri A.bacterium H.marina	QSVILQQVRNGVAMRMAVLELFLLRDFRFF QSVILQQVQNGVAIRMAVLELLFLAAQDPNLIHHQ RSLILEQVGNGVFIRMAVLQELLGK

Figure 147: MUSCLE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10855 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered randomly and are listed from top to bottom as followed: *C. burnetii*, *C. mudrowiae*, *P. antarcticus*, *G. bacterium*, *O. atlanticus*, *L. arctica*, *T. bacterium*, *H. bacterium*, *P. sabulinigri*, *A. bacterium*, *H. marina*. Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid (MUSCLE, <">https://www.ebi.ac.uk/Tools/msa/muscle/>).

Figure 148: MUSCLE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10855 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *C. burnetii*, *C. mudrowiae*, *P. antarcticus*, *G. bacterium*, *O. atlanticus*, *L. arctica*, *T. bacterium*, *H. bacterium*, *P. sabulinigri*, *A. bacterium*, *H. marina*. The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (MUSCLE, ">https://www.ebi.ac.uk/Tools/msa/muscle/>).

Figure 149: MUSCLE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10855 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *C. burnetii*, *C. mudrowiae*, *P. antarcticus*, *G. bacterium*, *O. atlanticus*, *L. arctica*, *T. bacterium*, *H. bacterium*, *P. sabulinigri*, *A. bacterium*, *H. marina*. The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (MUSCLE, ">https://www.ebi.ac.uk/Tools/msa/muscle/>).

Figure 150: Sequence logo generated from the MUSCLE multiple sequence alignments of *Coxiella burnetii* gene BMW92_RS10855 and the top 10 organism sequences similarities selected. Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid. The conservation of each amino acid among residue across similar sequences is represented by the height of each single letter abbreviation of the amino acid. (WebLogo, <https://weblogo.berkeley.edu/logo.cgi>).

T-COFFEE

A.ehrlichii	MSNNTLCFIGGGNMARSLIGGLLADGFDPQAVRVADPDAGKRDDLANRFG
A.mobile	MTMKTLCFIGGGNMARSLIGGLLTDGYDPQAIRVAEPDAGKREDLANRFG
C.bacterium	MKDVNIAFIGGGNMATSLIGGLLADHVSPARLCVADRDPAQREHLAAQFG
C.bacterium_1	MDTFTITFIGGGNMARSLIGGLIADGTPVDRIRVSDPSAEQRSQLQGLFG
C.burnetii	MNTSNITFIGGGNMARNIVVGLIANGYDPNRICVTNRSLDKLDFFKEKCG
C.mudrowiae	MRIANITFIGGGNMACNIVVGLLANGYDSNRICVTNPTSDKLTFFREKCK
N.halophilus	MNEKTLAFIGGGNMATSLIGGLIADGRNAQTIWVADPDRSKLDALHHRFS
N.mobilis	MAEESITFIGGGNMAYSLVGGLIADGYRAERVHVADPDPAKRMDLANRFR
0.beijerinckii	MQNATMAFLGAGNMCGSIIGGLIAEGYSPEQITATRRSEERLQAIKEEFG
T.denitrificans	MEQGIISFIGGGNMCSSLVGGLIADGYAPERIRVSDPGEETLASLRARFG
T.endolucinida	MSNNNITFIGGGNMATSLINGLIADGYEKQRITVSDPDAEKLAQLAARCG
	* : *:*.***:: **::: : .: :
A.ehrlichii	VRVYADNLEAAADADTVILAVKPQVVRTACEQLVAGSGDAGRLFISIAAG
A.mobile	VRVHEDNLEAAANAQAVILAVKPQVIRPVCEQLAGAEAGKGRVYISIAAG
C.bacterium	VRTSEDNAACAEDADVIVLAVKPQVLHEVCEALTDSVQRKQPLVVSVAAG
C.bacterium_1	IATFADNHDAIAGADVIVLAVKPQIMQAVATGLAPALSGVKPLLLSIAAG
C.burnetii	VHTTQDNRQGALNADVVVLAVKPHQIKMVCEELKDILSETKILVISLAVG
C.mudrowiae	VRTTQNNREGATNADAIILAVKPNQVKGVCEELKDIVNTLHPLIISVAVG
N.halophilus	VNTTPDNLQAAQEAEVVVLAVKPQQLRTVATGLKSVVTSSQPLWLTIAAG
N.mobilis	IHVHEDNRKAVLRAAAVVLAVKPQIIKSVLEPLGPILREQKSLVISIAAG
0.beijerinckii	VQTSTDNIAAVASHDVIILGVKPQMMKELCDQIKDQVQQSKPLVISVAAG
T.denitrificans	VHTTHDNREAAAGAGVVVLAVKPQVLPKVAAELAPVVQEHGTLVVSIAAG
T.endolucinida	VHTQSDNNSAISNAEVVVLAVKPQVLKSVAQDLAAAIQQVKPLVISIAAG
	: . :* .::*.**: : : : :::*.*
A.ehrlichii	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE
A.ehrlichii A.mobile	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE
A.ehrlichii A.mobile C.bacterium	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE
A.ehrlichii A.mobile C.bacterium C.bacterium_1	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE VRVKLLQKWLQS-EPAIVRAMPNTPASVGAGATALFANEKATKEQRNLAE
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE VRVKLLQKWLQS-EPAIVRAMPNTPASVGAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE VRVKLLQKWLQS-EPAIVRAMPNTPASVGAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE VRVKLLQKWLQS-EPAIVRAMPNTPASVGAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPSLLRCGAAGLYANASVSDEQKQVAE
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE VRVKLLQKWLQS-EPAIVRAMPNTPASVGAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPSLLRCGAAGLYANASVSDEQKQVAE IRTDLQRWLGA-GVALVRTMPNTPALVKSGATALFATAAVTAAQRDQAE
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans T.endolucinida	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE VRVKLLQKWLQS-EPAIVRAMPNTPASVGAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPSLLRCGAAGLYANASVSDEQKQVAE IRTTDLQRWLGA-GVALVRTMPNTPALVKSGATALFATAAVTAAQRDQAE VKESSLRNWLGG-EVALVRSMPNTPAMIQSGATGLHAGPGVSEAQRNQAE
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans T.endolucinida	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE VRVKLLQKWLQS-EPAIVRAMPNTPASVGAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPSLLRCGAAGLYANASVSDEQKQVAE IRTTDLQRWLGA-GVALVRTMPNTPALVKSGATALFATAAVTAAQRDQAE VKESSLRNWLGG-EVALVRSMPNTPAMIQSGATGLHAGPGVSEAQRNQAE : : .** :**:****: : **:.**
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans T.endolucinida	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE VRVKLLQKWLQS-EPAIVRAMPNTPASVGAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPSLLRCGAAGLYANASVSDEQKQVAE IRTTDLQRWLGA-GVALVRTMPNTPALVKSGATALFATAAVTAAQRDQAE VKESSLRNWLGG-EVALVRSMPNTPAMIQSGATGLHAGPGVSEAQRNQAE : : .** :**:****: : **:.*.* . *:: **
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans T.endolucinida A.ehrlichii	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE VRVKLLQKWLQS-EPAIVRAMPNTPASVGAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPSLLRCGAAGLYANASVSDEQKQVAE IRTTDLQRWLGA-GVALVRTMPNTPALVKSGATALFATAAVTAAQRDQAE VKESSLRNWLGG-EVALVRSMPNTPAMIQSGATGLHAGPGVSEAQRNQAE : : : ** : **:**** : : **:.*.* : *:: **
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans T.endolucinida A.ehrlichii A.mobile	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE VRVKLLQKWLQS-EPAIVRAMPNTPASVGAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPSLLRCGAAGLYANASVSDEQKQVAE IRTTDLQRWLGA-GVALVRTMPNTPALVKSGATALFATAAVTAAQRDQAE VKESSLRNWLGG-EVALVRSMPNTPAMIQSGATGLHAGPGVSEAQRNQAE : : .** :**:****: : **:.** . *:: **
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans T.endolucinida A.ehrlichii A.mobile C.bacterium	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE VRVKLLQKWLQS-EPAIVRAMPNTPASVGAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPSLLRCGAAGLYANASVSDEQKQVAE IRTTDLQRWLGA-GVALVRTMPNTPALVKSGATALFATAAVTAAQRDQAE VKESSLRNWLGG-EVALVRSMPNTPAMIQSGATGLHAGPGVSEAQRNQAE : : .** :**:****: : **:.** : *::** SLMRAVGLVVWLDDEAQMDTVTAVSGSGPAYFFLLMEAIEDAARDLGLPG SLMRAVGLVVWLDDEAQMDIVTALSGSGPAYFFLLMEAIEDAARDLGLPA
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans T.endolucinida A.ehrlichii A.mobile C.bacterium_1	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE VTVKLLQKWLQS-EPAIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE IRIPDLERWLGG-PAPIVRAMPNTPASVGAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPSLLRCGAAGLYANASVSDEQKQVAE IRTTDLQRWLGA-GVALVRTMPNTPALVKSGATALFATAAVTAAQRDQAE VKESSLRNWLGG-EVALVRSMPNTPAMIQSGATGLHAGPGVSEAQRNQAE : : .** :**:****: : **:.*.* . *:: ** SLMRAVGLVVWLDDEAQMDTVTAVSGSGPAYFFLLMEAIEDAARDLGLPG SLMRAVGLVVWLDDETQMDTVTAVSGSGPAYFFLLMEAIEDAARDLGLPG AILRATGLTLWVDDEAQMDIVTALSGSGPAYFFLLMEAIEEAAREQGLPA
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans T.endolucinida A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE VRVKLLQKWLQS-EPAIVRAMPNTPSSVRAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPSLLRCGAAGLYANASVSDEQKQVAE IRTTDLQRWLGA-GVALVRTMPNTPALVKSGATALFATAAVTAAQRDQAE VKESSLRNWLGG-EVALVRSMPNTPAMIQSGATGLHAGPGVSEAQRNQAE : : .** :****** : **:*** . *:: ** SLMRAVGLVVWLDDEAQMDTVTAVSGSGPAYFFLLMEAIEDAARDLGLPG SLMRAVGLVVWLDDEAQMDTVTAVSGSGPAYFFLLMEAIEDAARDLGLPA TILRATGLTLWVDDEAQMDIVTALSGSGPAYFFLIMEAIEEAAREQGLPA
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans T.endolucinida A.ehrlichii A.mobile C.bacterium_1 C.burnetii C.mudrowiae	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANDQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGG-ASRIVRAMPNTPASVRAGATGLFANETVDKDQKNLAE VTVKLLQKWLQS-EPAIVRAMPNTPASVGAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE IRTTDLQRWLGA-GVALVRTMPNTPALVKSGATALFATAAVTAAQRDQAE VKESSLRNWLGG-EVALVRSMPNTPAMIQSGATGLHAGPGVSEAQRNQAE : : .** :**:****: : **:.** . *:: ** SLMRAVGLVVWLDDEAQMDTVTAVSGSGPAYFFLLMEAIEDAARDLGLPG SLMRAVGLVVWLDDETQMDTVTAVSGSGPAYFFLLMEAIEDAARDLGLPA TILRAVGLTLWVDNEDLIDSVTAVSGSGPAYFFLIMEAIEEAAREQGLPA
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans T.endolucinida A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPASVRAGATGLFANETVDKDQKNLAE VRVKLLQKWLQS-EPAIVRAMPNTPASVGAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPALVKSGATALFATAAVTAAQRDQAE VKESSLRNWLGG-EVALVRSMPNTPAMIQSGATGLHAGPGVSEAQRNQAE : : .** : :*::****** : : **:.* .
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans T.endolucinida A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGK-ASRIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE VRVKLLQKWLQS-EPAIVRAMPNTPSSVRAGATGLFANETVDKDQKNLAE VRVKLLQKWLQS-EPAIVRAMPNTPALVQAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPSLLRCGAAGLYANASVSDEQKQVAE IRTTDLQRWLGA-GVALVRTMPNTPALVKSGATALFATAAVTAAQRDQAE VKESSLRNWLGG-EVALVRSMPNTPAMIQSGATGLHAGPGVSEAQRNQAE : : .** :**:****: : **:.** . *:: ** SLMRAVGLVVWLDDEAQMDTVTAVSGSGPAYFFLLMEAIEDAARDLGLPG SLMRAVGLVVWLDDEAQMDIVTALSGSGPAYFFLLMEAIEDAARDLGLPG SIMRAVGLVWVSSEDQIEKIAALSGSGPAYFFLIMEAIEDAARDLGLDE SIMRAVGLVWLSLEDQIDEVAALSGSGPAYFFLIMEALQEAAEQLGLTK SILRAVGLVWLSLEDQIDEVAALSGSGPAYFFLIMEALQEAAEQLGLTK SILRAVGLVWLSLEDQIDEVAALSGSGPAYFFLVMEALQEAGEGLGLPK SVLRAVGLTWVKSEDQIEKIAALSGSGPAYFFLVMEAMEKAAIDLGLDD SLLRAVGIQWLDDETLDIVTALSGSGPAYFFLVMEAMEKAAIDLGLDD
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans T.endolucinida A.ehrlichii A.mobile C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGG-HVALVRTMPNTPALVRSGATGLFANETVDKDQKNLAE VTVKLLQKWLQS-EPAIVRAMPNTPASVGAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPALVKSGATALFATAAVTAAQRDQAE VKESSLRNWLGG-EVALVRSMPNTPAMIQSGATGLHAGPGVSEAQRNQAE : : .** :*******: : **:.** . *:: ** SLMRAVGLVVWLDDEAQMDTVTAVSGSGPAYFFLLMEAIEDAARDLGLPG SLMRAVGLVVWLDDEAQMDTVTAVSGSGPAYFFLLMEAIEDAARDLGLPG AILRATGLTLWVDDEAQMDIVTALSGSGPAYFFLIMEAIEEAAREQGLPA TILRAVGLTLWVDNEDLIDSVTAVSGSGPAYFFLIMEALQEAAEQLGLTK SILRAVGLVIWLSLEDQIDEVAALSGSGPAYFFLIMEALQEAAEQLGLTK SILRAVGLVVWLSLEDQIDEVAALSGSGPAYFFLVMEALQEAGEGLGLPK SVLRAVGLTLWLKDENLMEVVTALSGSGPAYFFLVMEAMEKAAIDLGLDD SLLRAVGIIQWLDDETLLDIVTALSGSGPAYFFLVMEAMEKAAIDLGLDD SLLRAVGIIQWLDDETLLDIVTALSGSGPAYFFLVMEAMEKAAIDLGLDD SLLRAVGIIQWLDDETLLDIVTALSGSGPAYFFLVMEAMEKAAIDLGLDD SLLRAVGIIQWLDDETLLDIVTALSGSGPAYFFLVMEAMEKAAIDLGLDD
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans T.endolucinida A.ehrlichii A.mobile C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans	VREPDLTRWLGG-QAAVVRTMPNTPSLVGTGATALYANDRVKERQRELAE VREPDLTRWLGG-SAAVVRTMPNTPSLVGTGATALYANPQVSEPQRELAE VRTDSLRRWLGGGDVAIVRAMPNTPALLQSGATGLYACTGVSEEQRDLAE IRSTDLHRWLGG-HVALVRTMPNTPALVRSGATGLFARKDVSREQRDLAE VTTPLIEKWLGG-HVALVRTMPNTPALVRSGATGLFANETVDKDQKNLAE VTVKLLQKWLQS-EPAIVRAMPNTPASVGAGATALFANEKATKEQRNLAE IRIPDLERWLGG-PAPIVRAMPNTPALVQAGATALFANAQTNPQQRQMAE VREPDISRWLGG-QIAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPALVRAGATALYANEYVSQNQRDLAE LTTETLERWLGG-NVAVVRTMPNTPALVKSGATALFATAAVTAQRDQAE VKESSLRNWLGG-EVALVRSMPNTPAMIQSGATGLHAGPGVSEAQRNQAE : : : ** : ***:****: : **:.** . *:: ** SLMRAVGLVVWLDDEAQMDTVTAVSGSGPAYFFLLMEAIEDAARDLGLPG SLMRAVGLVVWLDDEAQMDTVTAVSGSGPAYFFLLMEAIEDAARDLGLPG AILRATGLTLWVDDEAQMDIVTALSGSGPAYFFLIMEAIEEAAREQGLPA TILRAVGLTLWVDNEDLIDSVTAVSGSGPAYFFLIMEALQEAAEQLGLTK SILRAVGLVVWLSLEDQIDEXAALSGSGPAYFFLIMEALQEAAEQLGLTK SILRAVGLVUWLSLEDQIDEVAALSGSGPAYFFLVMEALQEAAEQLGLTK SILRAVGLTLWLKDENLMEVVTALSGSGPAYFFLVMEALQEAAEQLGLTK SURAVGLTLWLKDENLMEVVTALSGSGPAYFFLVMEAMEKAAIDLGLDD SLLRAVGIQWDDTTLLDIVTALSGSGPAYFFLVMEAMEKAAIDLGLDD SLLRAVGIQWDDETLDIVTALSGSGPAYFFLVMEAMEKAAIDLGLDD SLLRAVGIQWDDTTLLDIVTALSGSGPAYFFLVMEAMEKAAIDLGLDD SLLRAVGITQWLDDETLDUTVALSGSGPAYFFLVMEAMEKAAIDLGLDD SLLRAVGITQWLDDETLDUTVALSGSGPAYFFLVMEAMEKAAIDLGLDD SLLRAVGITQWLDDETLDUTVALSGSGPAYFFLVMEAMEKAAIDLGLDD SLLRAVGITQWDKEELMEAVTGVSGSGPAYFFLVMEAMEKAAIDLGLDD

:::*.*: *:. * :: ::.:******* :* :** :: :. **

A.ehrlichii	ETARLLTIETALGAAKMALESDESPAQLRQRVTSPGGTTEHALHVLEDGE
A.mobile	ETARLLTIETALGAAKMALESDESPGQLRQRVTSPGGTTEHALHLLEDGE
C.bacterium	QTARLLTLQTALGAARMALESSEPVATL RKR VTSPGGTTEQGLKAMEAGD
C.bacterium_1	ESARLLTLETALGAARMALESDVGPATLRQRVTSPGGTTERAIGEMQEAD
C.burnetii	ETAELLTEQTVLGAARMALETEQSVVQLRQFVTSPGGTTEQAIKVLESGN
C.mudrowiae	ETVQLLTAQTVWGAARMSLEAEEDLVELRRFVTSPGGTTEQAIKVLKSGN
N.halophilus	STARLLTLETAFGAAKMALESEEDSIRLRQRVTSPGGTTERAITALEEAN
N.mobilis	QTARLLTLETALGAARMALESDEDPGRLRLRVTSPGGTTEAATRVLESGG
0.beijerinckii	EAAKELTLQTVLGAARMATESDVEPAELRRRVTSPGGTTEQAIKTFNEGG
T.denitrificans	RTARLLTLQTAFGAAKMALESDEEPSLLRQRVTSPGGTTERALNVLEEGK
T.endolucinida	DTARLLTLQTALGAARMALESSDSPAVLRQKVTSPGGTTERALDILEEGK
	*** *** *******************************
A.ehrlichii	YRALMTRAVQAAAKRAQELGQMLGEQ
A.ehrlichii A.mobile	YRALMTRAVQAAAKRAQELGQMLGEQ YRTLMARAVKAAAQRARELGQMLGEQ
A.ehrlichii A.mobile C.bacterium	YRALMTRAVQAAAKRAQELGQMLGEQ YRTLMARAVKAAAQRARELGQMLGEQ IDALLGKVLKAARDRSRELAKLLDDT
A.ehrlichii A.mobile C.bacterium C.bacterium_1	YRALMTRAVQAAAKRAQELGQMLGEQ YRTLMARAVKAAAQRARELGQMLGEQ IDALLGKVLKAARDRSRELAKLLDDT IKGIFAKALTAARDRSRELSDLLGSD
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii	YRALMTRAVQAAAKRAQELGQMLGEQ YRTLMARAVKAAAQRARELGQMLGEQ IDALLGKVLKAARDRSRELAKLLDDT IKGIFAKALTAARDRSRELSDLLGSD LRELFIKALTAAVNRAKELSKTVDQ
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae	YRALMTRAVQAAAKRAQELGQMLGEQ YRTLMARAVKAAAQRARELGQMLGEQ IDALLGKVLKAARDRSRELAKLLDDT IKGIFAKALTAARDRSRELSDLLGSD LRELFIKALTAAVNRAKELSKTVDQ LPELFTNVLKAAVQRAKELSVELEKS-I
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus	YRALMTRAVQAAAKRAQELGQMLGEQ YRTLMARAVKAAAQRARELGQMLGEQ IDALLGKVLKAARDRSRELAKLLDDT IKGIFAKALTAARDRSRELSDLLGSD LRELFIKALTAAVNRAKELSKTVDQ LPELFTNVLKAAVQRAKELSVELEKS-I IREAFAHALRAARDRTRELAEELGTDHA
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis	YRALMTRAVQAAAKRAQELGQMLGEQ YRTLMARAVKAAAQRARELGQMLGEQ IDALLGKVLKAARDRSRELAKLLDDT IKGIFAKALTAARDRSRELSDLLGSD LRELFIKALTAAVNRAKELSKTVDQ LPELFTNVLKAAVQRAKELSVELEKS-I IREAFAHALRAARDRTRELAEELGTDHA AQKLFQQALQAATTRAGELGRLLGEQ
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii	YRALMTRAVQAAAKRAQELGQMLGEQ YRTLMARAVKAAAQRARELGQMLGEQ IDALLGKVLKAARDRSRELAKLLDDT IKGIFAKALTAARDRSRELSDLLGSD LRELFIKALTAAVNRAKELSKTVDQ LPELFTNVLKAAVQRAKELSVELEKS-I IREAFAHALRAARDRTRELAEELGTDHA AQKLFQQALQAATTRAGELGRLLGEQ MQELFSKAVQASANRGTELAKLLDQ
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans	YRALMTRAVQAAAKRAQELGQMLGEQ YRTLMARAVKAAAQRARELGQMLGEQ IDALLGKVLKAARDRSRELAKLLDDT IKGIFAKALTAARDRSRELSDLLGSD LRELFIKALTAAVNRAKELSKTVDQ LPELFTNVLKAAVQRAKELSVELEKS-I IREAFAHALRAARDRTRELAEELGTDHA AQKLFQQALQAATTRAGELGRLLGEQ MQELFSKAVQASANRGTELAKLLDQ LRELFRDALTSARDRSRELAAILGRDPD
A.ehrlichii A.mobile C.bacterium C.bacterium_1 C.burnetii C.mudrowiae N.halophilus N.mobilis O.beijerinckii T.denitrificans T.endolucinida	YRALMTRAVQAAAKRAQELGQMLGEQ YRTLMARAVKAAAQRARELGQMLGEQ IDALLGKVLKAARDRSRELAKLLDDT IKGIFAKALTAARDRSRELSDLLGSD LRELFIKALTAAVNRAKELSKTVDQ LPELFTNVLKAAVQRAKELSVELEKS-I IREAFAHALRAARDRTRELAEELGTDHA AQKLFQQALQAATTRAGELGRLLGEQ MQELFSKAVQASANRGTELAKLLDQ LRELFRDALTSARDRSRELAAILGRDPD IRTLIDMALHGAQERSVELSEMLGEQ

Figure 151: T-COFFEE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10855 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered randomly and are listed from top to bottom as followed: *A. ehrlichii, A. mobile, C. bacterium, C. bacterium_1, C. burnetii, C. mudrowiae, N. halophilus, N. mobilis, O. beijerinckii, T. denitrificans, T. endolucinida.* Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid (T-COFFEE, <https://www.ebi.ac.uk/Tools/msa/tcoffee/>).

Figure 152: T-COFFEE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10855 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *A. ehrlichii*, *A. mobile*, *N. mobilis*, *C. bacterium*, *C. burnetii*, *C. mudrowiae*, *O. beijerinckii*, *N. halophilus*, *T. denitrificans*, *C. bacterium_1*, T. endolucinida. The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (T-COFFEE,

<https://www.ebi.ac.uk/Tools/msa/tcoffee/>).

Figure 153: T-COFFEE multiple sequence alignment phylogenetic cladogram for *Coxiella burnetii* gene BMW92_RS10855 and the top 10 organism sequences similarities selected. Organism sequences were abbreviated by the genus and species in which the sequence similarity originated. Organism sequences were ordered from top to bottom as followed: *A. ehrlichii*, *A. mobile*, *N. mobilis*, *C. bacterium*, *C. burnetii*, *C. mudrowiae*, *O. beijerinckii*, *N. halophilus*, *T. denitrificans*, *C. bacterium_1*, T. endolucinida. The numbers followed behind each organism displays the correlation and closeness of each respective organism to a common ancestor shared between the organism and *Coxiella burnetii* (T-COFFEE,

<https://www.ebi.ac.uk/Tools/msa/tcoffee/>).

Figure 154: Sequence logo generated from the T-COFFEE multiple sequence alignments of *Coxiella burnetii* gene BMW92_RS10855 and the top 10 organism sequences similarities selected. Amino acids are represented by single letter abbreviations and distinct colors for each respective amino acid. The conservation of each amino acid among residue across similar

sequences is represented by the height of each single letter abbreviation of the amino acid.

(WebLogo, <https://weblogo.berkeley.edu/logo.cgi>).

Protein Localization

SignalP

SignalP-5.0 prediction (Gram-negative): Sequence

Figure 155: SignalP 5.0 prediction (Gram-negative) for gene BMW92_RS10855 of *Coxiella burnetii*. The SP (Sec/SPI), TAT (Tat/SPI), LIPO (Sec/SPII), and CS probability scores combined were all less than a total 0.0034 (0.34%) which results in the likelihood of the protein being a signal peptide as highly unlikely and can confirm there is no signal peptide of these protein types. The program calculated the probability scores for OTHER as 0.9966 (99.66%). This probability score indicates the protein from the gene BMW92_RS10855 has another protein classification that is not related to similar function or type as a signal peptide (SignalP, <http://www.cbs.dtu.dk/services/SignalP/>).

LipoP

```
# Sequence CYT score=-0.200913
# Cut-off=-3
Sequence LipoP1.0:Best CYT 1 1 -0.200913
# NO PLOT made - less than 4 putative cleavage sites predicted
```

Figure 156: LipoP 1.0 was unable to generate a plot graph due to there being less than four predicted putative cleavage sites. The best localization prediction resulted in the highest scoring class being the cytoplasmic protein class (LipoP, <http://www.cbs.dtu.dk/services/LipoP/>).

TMHMM

```
# WEBSEQUENCE Length: 310
# WEBSEQUENCE Number of predicted TMHs: 0
# WEBSEQUENCE Exp number of AAs in TMHs: 0.00546
# WEBSEQUENCE Exp number, first 60 AAs: 0
# WEBSEQUENCE Total prob of N-in: 0.00311
WEBSEQUENCE TMHMM2.0 outside 1 310
```


Figure 157: TMHMM posterior probability displayed a line graph that predicts the localization of the protein coded from BMW92_RS10855 as entirely outside the membrane. The red line, representative of the protein being located in the transmembrane, was 0.0 (0.0% probability) across the entirety of the line graph. This is indicative of the protein being located within the transmembrane as highly unlikely. The blue line, representative of the protein being located inside the membrane, was at 0.00 (0.0% probability). This is indicative of the protein being located located inside of the membrane as highly unlikely. The magenta line, representative of the protein being located being located located inside of the membrane as highly unlikely. The magenta line, representative of the protein being located being located being located located line, representative of the protein being located bei

protein being located outside the membrane, was at 1.0 (100% probability). This is indicative of the protein being located outside of the membrane as highly likely (TMHMM, http://www.cbs.dtu.dk/services/TMHMM/).

BOMP

The total number of valid proteins submitted is: 1 The total number of integral β-barrel outer membrane proteins predicted is: 0

Sequence name Category Best BLAST hit

Figure 158: The BOMP test result identified there are no integral beta-barrel outer membrane

proteins for gene BMW92_RS10855 (BOMP, <http://services.cbu.uib.no/tools/bomp>).

PSORTb

Final Prediction:

Cytoplasmic

9.97

SeqID: C.burnetii		
Analysis Report:		
CMSVM-	Unknown	[No details]
CytoSVM-	Cytoplasmic	[No details]
ECSVM-	Unknown	[No details]
ModHMM-	Unknown	[No internal helices found]
Motif-	Unknown	[No motifs found]
OMPMotif-	Unknown	[No motifs found]
OMSVM-	Unknown	[No details]
PPSVM-	Unknown	[No details]
Profile-	Unknown	[No matches to profiles found]
SCL-BLAST-	Cytoplasmic	[matched <u>12230948</u> : Ornithine carbamoyltransferase]
SCL-BLASTe-	Unknown	[No matches against database]
Signal-	Unknown	[No signal peptide detected]
Localization Scores	s:	
Cytoplasmic	9.97	
CytoplasmicMembra	ane 0.01	
Periplasmic	0.01	
OuterMembrane	0.00	
Extracellular	0.00	

Figure 159: The PSORTb test resulted in an analysis report that identified no detectable internal helices, motifs, or signal peptides. The PSORTb localization scores resulted in a 9.97 value for the cytoplasmic location. The localization score for cytoplasmic membrane was 0.01. The localization score for periplasmic was 0.01. The localization score for the outer membrane location was 0.00. The localization score for the extracellular location was 0.00. The calculated localization scores for gene BMW92_RS10855 resulted in the final predictable location of the protein to be cytoplasmic (PSORTb, <https://www.psort.org/psortb/>).

Phobius

ID UNNAMED FT TOPO_DOM 1 310 NON CYTOPLASMIC.

//

Phobius posterior probabilities for UNNAMED

Figure 160: The Phobius posterior probability line graph generated for gene BMW92_RS10855 resulted in a calculated prediction that the whole sequence contains no membrane helices. The grey line, representative of the predicted transmembrane helices location, was around 0.1 (10%) posterior probability from amino acids 275-300. The green line, representative of the predicted cytoplasmic transmembrane helices location, was around 0.15 (15%) posterior probability from amino acids 0-302; the line changed to 0.2 (20%) from amino acids 302-310. The blue line, representative of the predicted non-cytoplasmic transmembrane helices location, was around

0.86 (86%) posterior probability from amino acids 0-280; the line changed to 0.8 (80%) from amino acids 281-310. The red line, representative of the presence or absence of a signal peptide, was 0.00 (0%) posterior probability (Phobius, http://phobius.sbc.su.se).

Discussion

Advancement in the field of bioinformatics and genomics has allowed for genomes of many organisms to be analyzed and understood. Continual mapping, sequencing, analyzing, and comparing of genomes continues this process of storing information and data of genes. The availability of public online bioinformatic programs used in this research allowed for the investigation of five hypothetical-protein coding genes from the bacterium *Coxiella burnetii*. Through the use of these bioinformatic programs, which are continuously updated, the five genes, BMW92_RS10760, BMW92_RS10830, BMW92_RS10835, BMW92_RS10840, BMW92_RS10855, were able to be analyzed and given a predicted function within the microorganism. Despite these genes undergoing analysis through various bioinformatic programs, further molecular and biochemical testing must be completed to fully assess and confirm the predicted function of each of the five genes selected from the bacteria *Coxiella burnetii*.

BMW92_RS10760

The first hypothetical protein coding gene of *Coxiella burnetii* that was examined was gene BMW92_RS10760. This gene was researched and predicted to encode uroporphyrinogen-III synthase. This enzyme catalyzes the asymmetrical cyclization of tetrapyrrole uroporphyrinogen-III, the fourth step in the biosynthesis of heme (Schubert et al. 2002). Tetrapyrroles have a general structure that consist of four pyrrolic rings bonded by methine bridges to one another in a cyclic form (Heinemann et al. 2008). The pyrrole rings are denoted A-D in a clockwise direction and have the ability to chelate divalent metal ions such as iron (Heinemann et al. 2008). Tetrapyrroles are derived from a common precursor, uroporphyrinogen

III, which begins the biosynthesis process as eight molecules of 2-aminoketone,5-aminolevulinic acid (Shoolingin-Jordan et al. 2003).

Every tetrapyrrole receives unique modifications around the ring periphery as the molecules are synthesized through a branched pathway. However, the unifying feature of all tetrapyrroles is the central metal ion that is capable of lying within the center of the cyclic ring structure (Schubert et al. 2002). This shared feature is only plausible due to the mechanism and action of the enzyme uroporphyrinogen-III synthase. The many biosynthetic steps of tetrapyrrole allow for modifications specific and tailored to organism species; but the final common step is critical whereby the D ring of hydroxymethylbilane is flipped during the ring closure. This allows the tetrapyrrole molecule to link to the A ring, thereby generating the asymmetrical structure of uroporphyrinogen-III (Schubert et al. 2002). This has led to an understanding that this final enzyme, uroporphyrinogen-III synthase, is essential and common to all living systems (Schubert et al. 2002).

The sequence alignments generated from BLASTp resulted in 10 outputs with high sequence similarity and level of conservation between the amino acid sequences of *Coxiella burnetii*, *Methylomarinum vadi*, *Methylovulum psychrotolerans*, *Methylomonas methanica*, *Gammaproteobacteria bacterium*, *Methylobacter tundripaludum*, *Methylobacter luteus*, *Thiohalophilus thiocyanatoxydans*, *Thiothrix nivea*, *Methylobacter oryzae*, *and Methylomonas lenta*. Each of the organisms, with respective genomes aligned with the BMW92_RS10760 gene from *C. burnetii*, were annotated to code for the same enzyme, uroporphyrinogen-III synthase. The regions of local similarity and agreement between each of the BLASTp output results support the prediction of the protein function of this specific gene.

The Conserved Domain Database (CDD) generated output results of the highest matched domain of protein to the selected gene of interest. The primary domain of this protein, projected from the top domain match when compared to the query sequence, was uroporphyrinogen-III synthase which is part of the HemD superfamily. This output result accentuates the sequence alignments, similarity, and proposed protein function examined earlier between the compared bacterial sequences.

The multiple sequence alignments and phylogenetic trees generated via MUSCLE and T-COFFEE gave visual representation of the high degree of conservation of this protein-coding sequence among similar organisms. These results further the proposition of the protein encoded and function of the protein as each of the organisms' sequences aligned and compared had evalues less than e⁻⁵. This similarity is visible from the results generated via MUSCLE and T-COFFEE, displaying minimal discrepancies between each of the organisms. WEBLOGO provided a graphical representation of the level of conservation of each amino acid residue compared to the query sequence of the selected gene. The graphical representation displays high conservation of amino acids throughout the entirety of the sequence; however, the highest level of conservation of amino acid residues amongst all organisms was from amino acid residue positions 114-192. The minimal amounts of variation displayed from BLASTp, MUSLCE, T-COFFEE, and WEBLOGO output results suggests that the *Coxiella burnetii* gene BMW92_RS10760 encodes uroporphyrinogen-III synthase, which is similar in compared organisms.

These results support the predicted function of the protein and further emphasizes the necessity of this gene for the organism. This enzyme is critical for this obligate intracellular bacterium as its function to produce a precursor for the tetrapyrrole cofactor heme (Schubert et

al. 2002). The heme cofactor is the greatest reservoir of iron as it has the ability to coordinate iron atoms at the center of its porphyrin ring (Heinemann et al. 2008). When complexed together, heme and iron have increased abilities for electron transfer and redox activity (Heinemann et al. 2008). Cells rely heavily on heme molecules for the function of widely conserved hemedependent-enzymes such as catalase, nitric oxide synthase, peroxidases, cytochromes, and hemoglobin (Choby and Skaar 2016). Furthermore, vital intracellular processes such as cellular respiration and the electron transport chain require heme to function as an electron shuttle for many of the enzymes used in these intracellular processes; without heme, the energy recovery would be minimal or non-existent (Choby and Skaar 2016). Heme has been linked to integral processes essential for living among organisms across many domains of life. Thus, organisms must either synthesize or acquire the heme molecule in order to survive, which leads to the speculation of genes that aid in this the synthesis of this molecule remain highly conserved and passed onto progeny. This further supports the prediction that this gene codes for uroporphyrinogen-III synthase, which aids in the production of a molecule, uroporphyrinogen-III, necessary for the synthesis of such an integral molecule for living.

Gram-negative bacteria, such as *C. burnetii*, contain an inner membrane (IM) and outer membrane (OM). The OM is distinct in composition as it is composed of an asymmetrical distribution of lipids, phospholipids, and lipopolysaccharides (Rollauer et al. 2015). This OM serves as a functional environment for outer membrane proteins (OMP) essential for cell functions. This double membrane composition serves as number of essential purposes; however, the cell still has to transported synthesized OMP, which are always synthesized in the cytoplasm, and transport them to locations throughout the cell, most often the OM (Rollauer et al. 2015). The uniqueness of OMP is attributed to the structure of the proteins molecules in which they lack

transmembrane alpha-helices (Koebnik et al 2000). OMP are integral membrane proteins which adopt a β -barrel structure with interchanging short and long loops on the periplasmic and extracellular sides (Rollauer et al. 2015). Each of the protein localization tests were conducted with the purpose of predicting the function of the protein and localizing the encoded protein, signal peptides, and transmembrane helices.

The first test, SignalP, identified no presence of signal peptides in the protein sequence. Signal peptides serve as a stop signal that aids in the creation of transmembrane proteins by anchoring proteins to the membrane (Coleman et al. 1985). Therefore, this result supports the idea that this protein does not require a signal peptide to attach to the membrane. The second test, LipoP, predicted the highest scoring class out of the four protein class types was cytoplasmic. There were no prediction outputs regarding the remaining three classes which further supports the data of the protein sequence lacking a signal peptide, lipoprotein signal peptide, or n-terminal transmembrane helix. Output results generated from TMHMM, Phobius, and PSORTb proposed the protein to be localized outside of the cytoplasm. Each test resulted in data with low localization scores and probabilities of the protein being localized in the cytoplasm, periplasm, and transmembrane. These findings were further supported by the BOMP test results whereby the predicted the number of integral β -barrel outer membrane proteins was zero. Therefore, this encoded protein has a low probability of being a transmembrane protein or localized in the cytoplasm of the cell.

BMW92_RS10830

The second hypothetical protein coding gene of *Coxiella burnetii* that was examined was gene BMW92_RS10830. This gene was researched and predicted to encode pyrroline-5-carboxylate reductase (P5C). This enzyme catalyzes the reduction of 1-pyrroline-5-carboxylate

(PCA) to L-proline, which is the final step of proline biosynthesis (Brandriss and Falvey 1992).L-proline is an important amino acid for many prokaryotes and eukaryotes microorganisms.Without ornithine cyclodeaminase in these microorganisms, the impeding result is amino acid starvation and blocking of protein synthesis if proline is not either synthesized or acquired (Forlani et al. 2011). Thus, the activity of P5C is absolutely necessary for many microorganisms.

Previous research has outlined the importance of this enzyme for pathogenic microorganisms. Inhibition of P5C, alongside select enzymes needed for amino acid biosynthesis, has been found to exert remarkable activity against bacteria (Harth and Horwitz 2003; Hutton et al. 2007; Forlani et al. 2011). The inhibition of enzymes like P5C, which catalyzes key reactions of amino acid biosynthesis and metabolism, have provided promising leads of control over pathogenic microorganisms (Pathania and Brown 2008). Furthermore, the amino acid proline has unique characteristics that contribute to distinct characteristics when incorporated into a protein sequence. Proline residues have been attributed with low configurational entropy due to the pyrrolidine ring hinderance; as a result, proline is important for unfolded and folded protein stability and structure (Ge and Pan 2009). Proline has been shown to play a role in stress tolerance and osmoregulation as a variety of microorganisms. Oxidative metabolism of proline allows bacteria to generate hydrogen peroxide, which implies that proline increases oxidative stress tolerance in bacteria (Zhang et al. 2014). Accumulation of compatible solutes, typically amino acids such as proline, preserve the positive turgor pressure required for cell division (Empadinhas and Costa 2008) Evidence has also suggested that an increase of intracellular proline allowed for prokaryotes to have increased protein and membrane stabilization even while under stress (Takagi 2008).

The sequence alignments generated from BLASTp resulted in 10 outputs with high sequence similarity and level of conservation between the amino acid sequences of *Coxiella burnetii*, *Coxiella mudrowiae*, *Thioalbus denitrificans*, *Nitrosococcus halophilus*, *Alkalilimnicola ehrlichii*, *Alkalispirillum mobile*, *Chromatiales bacterium*, *Nitrococcus mobilis*, *Nitrosococcus watsonii*, *Halobacteria archaeon*, *Aquicella lusitana*. Each of the organisms, with respective genomes aligned with the BMW92_RS10830 gene from *C. burnetii*, were annotated to code for the same enzyme, pyrroline-5-carboxylate reductase. The regions of local similarity and agreement between each of the BLASTp output results support the prediction of the protein function of this specific gene.

The Conserved Domain Database (CDD) generated output results of the highest matched domain of protein to the selected gene of interest. The primary domain of this protein, projected from the top domain match when compared to the query sequence, was pyrroline-5-carboxylate reductase which is part of the PRK11880 superfamily. This output result emphasizes the sequence alignments, similarity, and proposed protein function examined earlier between the compared bacterial sequences.

The multiple sequence alignments and phylogenetic trees generated via MUSCLE and T-COFFEE gave visual representation of the high degree of conservation of this protein-coding sequence among similar bacterial organisms. These results further the proposition of the protein encoded and function of the protein as each of the organisms' sequences aligned and compared had e-values less than e⁻⁵. This similarity is visible from the results generated via MUSCLE and T-COFFEE, displaying minimal discrepancies between each of the organisms. WEBLOGO provided a graphical representation of the level of conservation of each amino acid residue compared to the query sequence of the selected gene. The graphical representation displays high

conservation of amino acids throughout the entirety of the sequence; however, the highest level of conservation of amino acid residues amongst all organisms was from positions 118-240. The minimal amounts of variation displayed from BLASTp, MUSLCE, T-COFFEE, and WEBLOGO output results suggests that the *Coxiella burnetii* gene BMW92_RS10830 encodes pyrroline-5-carboxylate reductase, which is similar in compared organisms.

These results support the predicted function of the protein and further emphasizes the necessity of this gene for the organism. Recent studies have outlined the necessity of proline for virulence during infection and a wide range of cellular processes. Some pathogens rely on proline as a critical substrate, whereas other pathogens exploit proline for stress protection or use proline as an energy source (Christgen and Becker 2019). Regardless of the biological function, proline has been linked to integral processes critical for functioning and living. Therefore, prokaryotes rely heavily on an important molecule, which suggest that genes that aid in this the synthesis of this molecule remain highly conserved and passed onto progeny. This further supports the prediction that this gene codes for pyrroline-5-carboxylate reductase, which catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline, thereby aiding in the biosynthesis of an integral protein used for cell functioning.

Each of the protein localization tests were conducted with the purpose of predicting the function of the protein and localizing the encoded protein, signal peptides, and transmembrane helices. The first test, SignalP, identified no presence of signal peptides in the protein sequence. The predicted likelihood of the protein being classified as a protein type other than a signal peptide was the highest probability. Therefore, this result supports the idea that this protein does not require a signal peptide to attach to the membrane. The second test, LipoP, predicted the highest scoring class out of the four protein class types was cytoplasmic. There were no

prediction outputs regarding the remaining three classes which further supports the data of the protein sequence lacking a signal peptide, lipoprotein signal peptide, or n-terminal transmembrane helix. Output results generated from TMHMM, Phobius, and PSORTb proposed the protein to be localized in various regions. TMHMM predicted the highest probability of location to be extracellular. However, results also predicted a low probability of the protein localized inside the cell and transmembrane for the first 110 amino acid residues. This result was supported by Phobius which predicted the top domain as non-cytoplasmic while having an intermediate probability of the protein localized inside the cytoplasm and transmembrane for the first 110 amino acid residues. PSORTb generated a contradictory result which predicted the cytoplasm as the highest probability. This finding was further supported by the BOMP test results whereby the predicted the number of integral β -barrel outer membrane proteins was zero. Therefore, this encoded protein has a low probability of being a transmembrane protein or localized in the cytoplasm of the cell.

BMW92_RS10835

The third hypothetical protein coding gene of *Coxiella burnetii* that was examined was gene BMW92_RS10835. This gene was researched and predicted to encode pyridoxal phosphate-binding protein (PLPBP). This protein is highly uncharacterized but has been suggested to play a role in the homeostatic regulation of vitamin B₆ and amino acids. Deletion or absence of this protein causes pleotropic effects in many microorganisms, such as epilepsy in some eukaryotic mammals (Ito et al. 2019). Evidence has also displayed cell lines lacking PLPBP resulted in distinct proteomic changes, such as upregulation of several cytoskeleton and cell division associated proteins (Fux and Sieber 2019). Furthermore, recent studies have suggested the absence of this protein can result in the accumulation of pyridoxine 5'-phosphate

(PLP) and metabolites involved in the isoleucine and valine biosynthetic pathway (Ito et al. 2019).

The active form of vitamin B₆, pyridoxine 5'-phosphate (PLP), participates in many enzymatic processes (Fleischman et al. 2014). One of the main functions of vitamin B₆ is contributing as a highly versatile cofactor for diverse enzymatic reactions in basic metabolism (Richts et al. 2019). PLP has an important role during tryptophan synthase reaction. This molecule elicits an allosteric effect during the tryptophan synthase reaction as the enzymes involved require PLP (Jansonius 1998). Additionally, enzymes that catalyze decarboxylation, racemization, α -elimination, replacement, β - and γ -elimination or replacement reactions require PLP as a co-factor to regulate amino acid metabolism (Christen and Mehta 2001). Genes that code for PLPBP enable properly folded PLP to interact with PLP-dependent enzymes (Fleischman et al. 2014). This action of regulating PLP is critical to many organisms. This importance can be depicted by the number of PLP-dependent enzymes encoded by prokaryotes. Recent studies have revealed that PLP-dependent enzymes account for ~1.5% of most prokaryotic genomes and are estimated to be involved in $\sim 4\%$ of all catalytic reactions (Schneider et al. 2000). The predicted protein function of the gene has supportive evidence to be critical for maintaining homeostasis; thus, would be suggested to be highly conservative among organisms.

The sequence alignments generated from BLASTp resulted in 10 outputs with high sequence similarity and level of conservation between the amino acid sequences of *Coxiella burnetii*, *Rhipicephalus microplus*, *Coxiella mudrowiae*, *Amblyomma americanum*, *Amblyomma sculptum*, *Gammaproteobacteria bacterium*, *Beggiatoa*, *Thiotrichales bacterium*, *Nitrosococcus watsonii*, *Nitrosococcus halophilus*, *Nitrosococcus oceani*. Each of the organisms, with

respective genomes aligned with the BMW92_RS10835 gene from *C. burnetii*, were annotated to code for the same enzyme, pyridoxal phosphate-binding protein. The regions of local similarity and agreement between each of the BLASTp output results support the prediction of the protein function of this specific gene.

The Conserved Domain Database (CDD) generated output results of the highest matched domain of protein to the selected gene of interest. The primary domain of this protein, projected from the top domain match when compared to the query sequence, was pyridoxal phosphatebinding protein which is part of the PLPDE-III superfamily. This output result emphasizes the sequence alignments, similarity, and proposed protein function examined earlier between the compared bacterial sequences.

The multiple sequence alignments and phylogenetic trees generated via MUSCLE and T-COFFEE gave visual representation of the high degree of conservation of this protein-coding sequence among similar bacterial organisms. These results further the proposition of the protein encoded and function of the protein as each of the organisms' sequences aligned and compared had e-values less than e⁻⁵. This similarity is visible from the results generated via MUSCLE and T-COFFEE, displaying minimal discrepancies between each of the organisms. WEBLOGO provided a graphical representation of the level of conservation of each amino acid residue compared to the query sequence of the selected gene. The graphical representation displays high conservation of amino acids throughout a majority of the entire sequence. The highest level of conservation of amino acid residues amongst all organisms was from positions 192-228. The lowest level of conservation of amino acid residues amongst all organisms was from positions 223-238; which displayed no amino acids conserved. This suggest that the amino acids from position 3-232 are conserved and involved with coding the protein. The minimal amounts of

variation displayed from BLASTp, MUSLCE, T-COFFEE, and WEBLOGO output results suggests that the *Coxiella burnetii* gene BMW92_RS10835 encodes pyridoxal phosphate-binding protein, which is similar in compared organisms.

Each of the protein localization tests were conducted with the purpose of predicting the function of the protein and localizing the encoded protein, signal peptides, and transmembrane helices. The first test, SignalP, identified no presence of signal peptides in the protein sequence. The predicted likelihood of the protein being classified as a protein type other than a signal peptide was the highest probability. Therefore, this result supports the idea that this protein does not require a signal peptide to attach to the membrane. The second test, LipoP, predicted the highest scoring class out of the four protein class types was cytoplasmic. There were no prediction outputs regarding the remaining three classes which further supports the data of the protein sequence lacking a signal peptide, lipoprotein signal peptide, or n-terminal transmembrane helix. Output results generated from TMHMM, Phobius, and PSORTb proposed the protein to be localized in various regions. TMHMM predicted the highest probability of location to be extracellular. This was not entirely supported by the Phobius result. Phobius predicted the location of the protein to primarily be non-cytoplasmic, which supports TMHMM results. However, there were equal probabilities for the protein to be localized in the cytoplasm as the probability for both locations had similar values with little deviation. PSORTb generated a result which predicted the cytoplasm as the highest probability. This prediction was given an extremely high localization score of 9.97, which supports the second highest probability Phobius result of the protein localized in the cytoplasm. This finding was further supported by the BOMP test results whereby the predicted the number of integral β -barrel outer membrane proteins was

zero. Therefore, this encoded protein has a low probability of being a transmembrane protein or localized outside of the cell.

BMW92 RS10840

The fourth hypothetical protein coding gene of Coxiella burnetii that was examined was gene BMW92 RS10840. This gene was researched and predicted to encode phosphoenolpyruvate carboxykinase (PEPCK). This enzyme catalyzes the phosphorylation and decarboxylation of oxaloacetate (OAA) to form phosphoenolpyruvate (PEP) using guanosine triphosphate (GTP) (Matte et al. 1997). PEPCK is a critical enzyme for gluconeogenesis that catalyzes the first committed step in the diversion of tricarboxylic acid cycle intermediates toward gluconeogenesis (Matte et al. 1997). Through a two-step process, oxaloacetate is first decarboxylated to yield pyruvate enolate anion intermediate. The second step involves the transfer of phosphoryl group from a GTP molecule to the intermediate molecule, which ultimately yields phosphoenolpyruvate (Matte et al. 1997). Regulation of the PEPCK enzyme is under control of divalent metal ions, which are necessary for the active functioning of the enzyme. This requirement for divalent metal ions can be met by magnesium, manganese, or calcium (Goldie and Sanwal 1980). Studies have suggested that organisms can interchangeably use ATP to donate the phosphoryl group needed to form PEP; however, strong evidence suggest that bacterial PEPCKs are monomeric which categorizes the enzymes as GTP-dependent (Goldie and Sanwal 1980). Furthermore, PEPCK has a unique mononucleotide-binding fold which allows for a sterically strained high-energy conformation that is capable of lowering energy of activation for phosphoryl transfer (Delbaere et al. 2004). In specific eukaryotes, PEPCK can be used in glycolytic pathways; whereas in mammals, the enzyme is critical for carbohydrate metabolism (Matte et al. 1997). In bacterial cells, the enzyme functions in the gluconeogenetic

direction which is common to almost all organisms. Thus, the selected gene could code for such an important enzyme that is absolutely necessary for many organisms.

The sequence alignments generated from BLASTp resulted in 10 outputs with high sequence similarity and level of conservation between the amino acid sequences of *Coxiella burnetii*, *Coxiella mudrowiae*, *Rhipicephalus microplus*, *Legionellales bacterium*, *Aquicella lusitana*, *Coxiellaceae bacterium*, *Pseudospirillum japonicum*, *Aquicella siphonis*, *Rickettsiella isopodorum*, *Rickettsiella viridis*, *Modicisalibacter wilcox*. Each of the organisms, with respective genomes aligned with the BMW92_RS10840 gene from *C. burnetii*, were annotated to code for the same enzyme, phosphoenolpyruvate carboxykinase. The regions of local similarity and agreement between each of the BLASTp output results support the prediction of the protein function of this specific gene.

The Conserved Domain Database (CDD) generated output results of the highest matched domain of protein to the selected gene of interest. The primary domain of this protein, projected from the top domain match when compared to the query sequence, was pyridoxal phosphatebinding protein which is part of the PEPCK-HprK superfamily. This output result emphasizes the sequence alignments, similarity, and proposed protein function examined earlier between the compared bacterial sequences.

The multiple sequence alignments and phylogenetic trees generated via MUSCLE and T-COFFEE gave visual representation of the high degree of conservation of this protein-coding sequence among similar bacterial organisms. These results further the proposition of the protein encoded and function of the protein as each of the organisms' sequences aligned and compared had e-values less than e⁻⁵. This similarity is visible from the results generated via MUSCLE and T-COFFEE, displaying minimal discrepancies between each of the organisms. WEBLOGO

provided a graphical representation of the level of conservation of each amino acid residue compared to the query sequence of the selected gene. The graphical representation displays high conservation of amino acids throughout a majority of the entire sequence. The highest level of conservation of amino acid residues amongst all organisms was from positions 190-446. The lowest level of conservation of amino acid residues amongst all organisms was from positions 190-446. The lowest level of conservation of amino acid residues amongst all organisms was from positions 1-17; which displayed minimal or no amino acids conserved. This suggest that the amino acids from position 18-531 are conserved and involved with coding the protein. The minimal amounts of variation displayed from BLASTp, MUSLCE, T-COFFEE, and WEBLOGO output results suggests that the *Coxiella burnetii* gene BMW92_RS10840 encodes phosphoenolpyruvate carboxykinase, which is similar in compared organisms.

These results support the predicted function of the protein and further emphasizes the necessity of this gene for the organism. This enzyme is critical for the obligate intracellular bacterium, *C. burnetii*, to live (Chiba et al. 2015). PEPCK can be viewed as a cataplerotic enzyme as it has an important role of removing and recycling anions produced from the citric acid cycle to generate energy (Yang et al. 2009). Once OAA is converted to PEP, each subsequent product has a unique fate that allows for energy to be replenished or maintain necessary intracellular processes (Yang et al. 2009). The PEPCK enzyme serves a pivotal role of regulating carbon flow central metabolism, whether eukaryotic or prokaryotic (Chiba et al. 2015). Thus, the results lead to the idea that genes that aid such integral processes of the cell remain highly conserved and passed onto progeny. This further supports the prediction that this gene codes for phosphoenolpyruvate carboxykinase, an enzyme necessary for organism living.

Each of the protein localization tests were conducted with the purpose of predicting the function of the protein and localizing the encoded protein, signal peptides, and transmembrane

helices. The first test, SignalP, identified no presence of signal peptides in the protein sequence. The predicted likelihood of the protein being classified as a protein type other than a signal peptide was the highest probability. Therefore, this result supports the idea that this protein does not require a signal peptide to attach to the membrane. The second test, LipoP, predicted the highest scoring class out of the four protein class types was cytoplasmic. There were no prediction outputs regarding the remaining three classes which further supports the data of the protein sequence lacking a signal peptide, lipoprotein signal peptide, or n-terminal transmembrane helix. Output results generated from TMHMM, Phobius, and PSORTb proposed the protein to be localized in various regions. TMHMM predicted the highest probability of location to be extracellular. This was entirely supported by the Phobius result. Phobius predicted the location of the protein to primarily be non-cytoplasmic, which supports TMHMM results. PSORTb generated a result which predicted the cytoplasm as the highest probability. This prediction was given an extremely high localization score of 9.26, which is contradictory to both TMHMM and Phobius results. The BOMP test predicted the number of integral β -barrel outer membrane proteins as zero. This result is contradictory to each of the results that predicted the protein to be localized extracellularly with high significance. Therefore, this encoded protein has a low probability of being a signal protein or localized inside of the cell.

BMW92_RS10855

The fifth hypothetical protein coding gene of *Coxiella burnetii* that was examined was gene BMW92_RS10855. This gene was researched and predicted to encode aspartate carbamoyltransferase (ATCase). This enzyme catalyzes the first step in the biosynthesis of pyrimidine nucleotides (Patel et al. 2020). The enzymatic reaction occurs between carbamoyl phosphate and aspartate to form carbamoyl aspartate (Lehninger et al. 2013). ATCase has a

unique structure that allows it to act as an allosteric enzyme (Macol et al. 2001). Despite ATCase being ubiquitous and catalyzing the same reaction across many organisms, the enzyme remains polymorphic which allows for different oligomeric structures, compositions, and regulatory properties across diverse organisms (Patel et al. 2020). The composition of this enzyme consists of 12 polypeptide chains organized into six catalytic and six regulatory subunits (Lehninger et al. 2013). With such a unique structure, ATCase is capable of using its own regulatory subunits as either positive or negative regulators (Lehninger et al. 2013). This function of regulation is critical for all organisms. Any discrepancies in regulation of could result in upregulation or downregulation of nucleotides (Kantrowitz et al. 1988). Organisms must have their cells undergo RNA transcription and DNA replication to maintain homeostasis and survive. Both of these processes require ATCase which aids in the biosynthesis of pyrimidine nucleotides, the fundamental organic compound used for these absolutely necessary cellular processes. Pyrimidines are integral for forming hydrogen bonds with their complementary purines; thus, an absence of ATCase would result in a lack of nucleotide synthesis (Lehninger et al. 2013). Therefore, the selected gene could code for such an important enzyme that is absolutely necessary for all organisms.

The sequence alignments generated from BLASTp resulted in 10 outputs with high sequence similarity and level of conservation between the amino acid sequences of *Coxiella burnetii*, *Coxiella mudrowiae*, *Thiotrichales bacterium*, *Leucothrix arctica*, *Alteromonadaceae bacterium*, *Hydrocarboniclastica marina*, *Gammaproteobacteria bacterium*, *Oceanococcus atlanticus*, *Hahellaceae bacterium*, *Pseudolysobacter antarcticus*, *Pseudomonas sabulinigri*. Each of the organisms, with respective genomes aligned with the BMW92_RS10855 gene from *C. burnetii*, were annotated to code for the same enzyme, aspartate carbamoyltransferase. The

regions of local similarity and agreement between each of the BLASTp output results support the prediction of the protein function of this specific gene.

The Conserved Domain Database (CDD) generated output results of the highest matched domain of protein to the selected gene of interest. The primary domain of this protein, projected from the top domain match when compared to the query sequence, was aspartate carbamoyltransferase. This output result emphasizes the sequence alignments, similarity, and proposed protein function examined earlier between the compared bacterial sequences.

The multiple sequence alignments and phylogenetic trees generated via MUSCLE and T-COFFEE gave visual representation of the high degree of conservation of this protein-coding sequence among similar bacterial organisms. These results further the proposition of the protein encoded and function of the protein as each of the organisms' sequences aligned and compared had e-values less than e⁻⁵. This similarity is visible from the results generated via MUSCLE and T-COFFEE, displaying minimal discrepancies between each of the organisms. WEBLOGO provided a graphical representation of the level of conservation of each amino acid residue compared to the query sequence of the selected gene. The graphical representation displays high conservation of amino acids throughout a majority of the entire sequence. The highest levels of conservation of amino acid residues amongst all organisms were from positions 60-126 and 147-215. The lowest levels of conservation of amino acid residues amongst all organisms were from positions 1-9 and 355-339; which displayed no amino acids conserved. This suggest that the amino acids from position 10-334 are conserved and involved with coding the protein. The minimal amounts of variation displayed from BLASTp, MUSLCE, T-COFFEE, and WEBLOGO output results suggests that the Coxiella burnetii gene BMW92 RS10855 encodes aspartate carbamoyltransferase, which is similar in compared organisms.

These results support the predicted function of the protein and further emphasizes the necessity of this gene for the organism. This enzyme is critical for the transcription and DNA replication in *C. burnetii* (Lehninger et al. 2013). The pyrimidines are vital constituents necessary for all living organisms. These molecules serve as the chemical molecules for transmission of genetic traits while also serving as sources of energy in the form of ATP, signaling molecules, and secondary messengers (Khedkar et al. 2016). Thus, the results lead to the idea that genes produce an enzyme necessary for such integral processes of the cell remain highly conserved and passed onto progeny. This further supports the prediction that this gene codes for aspartate carbamoyltransferase.

Each of the protein localization tests were conducted with the purpose of predicting the function of the protein and localizing the encoded protein, signal peptides, and transmembrane helices. The first test, SignalP, identified no presence of signal peptides in the protein sequence. The predicted likelihood of the protein being classified as a protein type other than a signal peptide was the highest probability. Therefore, this result supports the idea that this protein does not require a signal peptide to attach to the membrane. The second test, LipoP, predicted the highest scoring class out of the four protein class types was cytoplasmic. There were no prediction outputs regarding the remaining three classes which further supports the data of the protein sequence lacking a signal peptide, lipoprotein signal peptide, or n-terminal transmembrane helix. Output results generated from TMHMM, Phobius, and PSORTb proposed the protein to be localized in various regions. TMHMM predicted the highest probability of location to be extracellular. This was entirely supported by the Phobius result. Phobius predicted the location of the protein to primarily be non-cytoplasmic. Both TMHMM and Phobius results had significantly high probability and prediction scores of the protein localized extracellularly.

PSORTb generated a result which predicted the cytoplasm as the highest probability. This prediction was given an extremely high localization score of 9.97, which is contradictory to both TMHMM and Phobius results. The BOMP test predicted the number of integral β -barrel outer membrane proteins as zero. This result is contradictory to each of the results that predicted the protein to be localized extracellularly with high significance. Therefore, this encoded protein has a low probability of being a signal protein or localized inside of the cell.

Summary

Each of the five-hypothetical protein-coding genes selected from Coxiella burnetii were analyzed using various biochemical programs and tools that tested for sequence similarity and protein localization. The first gene, BMW92 RS10760, is projected to code for uroporphyrinogen-III synthase with no signal peptide present. The second gene, BMW92 RS10830, is projected to code for pyrroline-5-carboxylate reductase with no signal peptide present. The third gene, BMW92 RS10835, is projected to code for pyridoxal phosphate-binding protein with no signal peptide present. The fourth gene, BMW92 RS10840, is projected to code for phosphoenolpyruvate carboxykinase with no signal peptide present. The fifth gene, BMW92 RS10855, is projected to code for aspartate carbamoyltransferase with no signal peptide present. The limitations of this research include the accessibility to a limited number of internet programs and databases to test amino acid and protein sequences. Limitations regarding funding, time, and accessibility to open laboratory facilities led to hypothetically proposed conclusions generated from these sources. Additional laboratory testing involving biochemical tools and methods will be necessary to confirm each projected result. Potential directions of future research include transformation of each selected gene into well-characterized and understood bacteria followed by biochemical testing; or cell lines, with selected genes,

undergoing gene-knockout testing with biochemical analysis for attributed function. Proposed functions may be validated and tested using gene mapping techniques, comparative genomics, and biochemical analysis. Further testing may additionally include structure-based methods, sequence-based methods, and active sight computational programs (Mills et al. 2015). Furthermore, the use of oligonucleotide microarrays, mass spectrometry, and two-dimensional polyacrylamide gel electrophoresis may determine mRNA, protein, and gene expression that allows for comparative analysis and determination of protein function (Chen et al. 2002). Further laboratory testing must be conducted to confirm the predicted functions of the five-hypothetical protein-coding genes of *Coxiella burnetii* that were analyzed in this research.

Acknowledgements

First and foremost, all glory, praise, and thanks to God, Jehovah-Raah, for His showers of blessings and unending joy, peace, and guidance. I am incredibly grateful for God's loving heart to direct every step of mine while at Oral Roberts University and leading my life to encounter numerous mentors, professors, and friends.

I want to express my deep and sincere gratitude to my research advisor, Dr. Celestino Velásquez, Ph.D., Assistant Professor and Chair of Biology and Chemistry Department at Oral Roberts University, for providing me the opportunity to conduct research. His care, concern, and sincerity for his students are beyond profound and have continually motivated me to achieve my goals. He has taught me the fundamental skills and knowledge necessary for carrying out research and living life as a Christian scientist. It was a great privilege and honor to work and study under his guidance and expertise. I would also like to thank him for his friendship, compassion, and great sense of humor.

I am incredibly thankful to my parents for their love, prayers, and sacrifices that allowed me to have an excellent education and foundation for my future. The seeds of encouragement, support, and love you have sown into my life are things I am forever grateful for and will continually extend towards others as a reminder of what has been extended towards me. Also, I would like to express my thanks to my siblings, Jordan, Analynn, and Jesse, for their neverending support and valuable prayers.

Lastly, I would like to acknowledge the countless friends I have had the privilege to meet and know while attending Oral Roberts University. The support and belief in my abilities, goals, future, and potential are greatly appreciated and have never gone unnoticed. Most importantly, I am extremely grateful for my best and closest friend, Karley Wills. Thank you for the countless

times you have encouraged and helped redirect my eyes onto the pioneer and perfecter of my faith, Jesus Christ. I am forever grateful for your continual patience, understanding, support, and love.
Literature Cited

- Akporiaye ET, Rowatt JD, Aragon AA, Baca OG. Lysosomal response of a murine macrophage like cell line persistently infected with Coxiella burnetii. Infection and Immunity. 1983
 [accessed 2020 Nov 11];40(3):1155–1162. doi:10.1128/iai.40.3.1155-1162.1983.
- Amano K, Williams JC. Chemical and immunological characterization of lipopolysaccharides from phase I and phase II Coxiella burnetii. Journal of Bacteriology. 1984 [accessed 2020 Nov 11];160(3):994–1002. doi:10.1128/jb.160.3.994-1002.1984.
- Angelakis E, Raoult D. Q fever. Veterinary microbiology. 2010 [accessed 2020 Nov 11];140(3– 4):297–309. doi:10.1016/j.vetmic.2009.07.016.
- Berven FS, Flikka K, Jensen HB, Eidhammer I. BOMP: a program to predict integral beta-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria. Nucleic acids research. 2004 [accessed 2020 Nov 11];32:W394-9. http://dx.doi.org/10.1093/nar/g kh351. doi:10.1093/nar/gkh351.
- Brandriss MC, Falvey DA. Proline biosynthesis in Saccharomyces cerevisiae: analysis of the PRO3 gene, which encodes delta 1-pyrroline-5-carboxylate reductase. Journal of Bacteriology. 1992 [accessed 2020 Nov 11];174(11):3782–3788. doi:10.1128/jb.174.11.3782-3788.1992.
- Brock TD, Madigan MT, Bender KS, Buckley DH, Sattely MW, Stahl DA. Biology of microorganisms. 15th ed. San Francisco (CA): Pearson; 2017.

- CBU Computational Biology Unit. Uib.no. [accessed 2020 Aug 6]. http://services.cbu.uib.no/tools/bomp.
- Chen G, Gharib TG, Huang C-C, Taylor JMG, Misek DE, Kardia SLR, Giordano TJ, Iannettoni MD, Orringer MB, Hanash SM, et al. Discordant protein and mRNA expression in lung adenocarcinomas. Molecular & cellular proteomics: MCP. 2002 [accessed 2020 Nov 11];1(4):304–313. http://dx.doi.org/10.1074/mcp.m200008-mcp200. doi:10.1074/mcp.m200008-mcp200.
- Chiba Y, Kamikawa R, Nakada-Tsukui K, Saito-Nakano Y, Nozaki T. Discovery of PPi-type Phosphoenolpyruvate Carboxykinase Genes in Eukaryotes and Bacteria. Journal of Biological Chemistry. 2015 [accessed 2020 Nov 11];290(39):23960–23970. http://dx.doi.org/10.1074/jbc.m115.672907. doi:10.1074/jbc.m115.672907.
- Christen P, Mehta PK. From cofactor to enzymes. The molecular evolution of pyridoxal-5'phosphate-dependent enzymes. The Chemical Record. 2001 [accessed 2020 Nov 11];1(6):436–447. http://dx.doi.org/10.1002/tcr.10005. doi:10.1002/tcr.10005.
- Choby JE, Skaar EP. Heme Synthesis and Acquisition in Bacterial Pathogens. Journal of Molecular Biology. 2016 [accessed 2020 Nov 10];428(17):3408–3428. doi:10.10 16/j.jmb.2016.03.018.
- Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxidants & Redox Signaling. 2019 [accessed 2020 Nov 11];30(4):683–709. http://dx.doi.org/10.1089/ars.2017.7335. doi:10.1089/ars.2017.7335.

- Coleman J, Inukai M, Inouye M. Dual functions of the signal peptide in protein transfer across the membrane. Cell. 1985 [accessed 2020 Nov 11];43(1):351–360. http://dx.doi.org/10.1016/0092-8674(85)90040-6. doi:10.1016/0092-8674(85)90040-6.
- Coleman SA, Fischer ER, Howe D, Mead DJ, Heinzen RA. Temporal analysis of Coxiella burnetii morphological differentiation. Journal of bacteriology. 2004 [accessed 2020 Nov 11];186(21):7344–7352. http://dx.doi.org/10.1128/JB.186.21.7344-7352.2004. doi:10.1128/JB.186.21.7344-7352.2004.
- Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. 2004 [accessed 2020 Sep 10]. http://dx.doi.org/10.1101/gr.849004. doi:10.1101/gr.849004.
- Delbaere LTJ, Sudom AM, Prasad L, Leduc Y, Goldie H. Structure/function studies of phosphoryl transfer by phosphoenolpyruvate carboxykinase. Biochimica et biophysica acta. 2004 [accessed 2020 Nov 11];1697(1–2):271–278. http://dx.doi.org/10.1016/j.bb apap.2003.11.030. doi:10.1016/j.bbapap.2003.11.030.
- Eldin C, Mélenotte C, Mediannikov O, Ghigo E, Million M, Edouard S, Mege J-L, Maurin M, Raoult D. From Q fever to Coxiella burnetii infection: A paradigm change. Clinical microbiology reviews. 2017 [accessed 2020 Nov 11];30(1):115–190. http://dx.doi.org/10.1128/cmr.00045-16. doi:10.1128/cmr.00045-16.
- Emanuelsson O. Predicting protein subcellular localization from amino acid sequence information. Briefings in bioinformatics. 2002 [accessed 2020 Nov 11];3(4):361–376. http://dx.doi.org/ 10.1093/bib/3.4.361. doi:10.1093/bib/3.4.361.

- EMBL-EBI. MUSCLE. Ebi.ac.uk. [accessed 2020 Jul 24]. https://www.ebi.ac.uk/Tools/msa/muscle/.
- EMBL-EBI. T-Coffee. Ebi.ac.uk. [accessed 2020 Jul 24]. https://www.ebi.ac.uk/Tools/msa/tcoffee/.
- Empadinhas N, da Costa MS. Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. International microbiology: the official journal of the Spanish Society for Microbiology. 2008 [accessed 2020 Nov 11];11(3):151–161. https://www.ncbi.nlm.nih.gov/pubmed/18843593.
- Fleischman NM, Das D, Kumar A, Xu Q, Chiu H-J, Jaroszewski L, Knuth MW, Klock HE, Miller MD, Elsliger M-A, et al. Molecular characterization of novel pyridoxal-5'-phosphate-dependent enzymes from the human microbiome: Microbiome PLP-Dependent Enzymes. Protein science: a publication of the Protein Society. 2014
 [accessed 2020 Nov 10];23(8):1060–1076. http://dx.doi.org/10.1002/pro.2493.
 doi:10.1002/pro.2493.
- Forlani G, Petrollino D, Fusetti M, Romanini L, Nocek B, Joachimiak A, Berlicki Ł, Kafarski P. δ1-Pyrroline-5-carboxylate reductase as a new target for therapeutics: inhibition of the enzyme from Streptococcus pyogenes and effects in vivo. Amino Acids. 2011 [accessed 2020 Nov 11];42(6):2283–2291. http://dx.doi.org/10.1007/s00726-011-0970-7. doi:10.1007/s00726-011-0970-7.
- Fux A, Sieber SA. Biochemical and Proteomic Studies of Human Pyridoxal 5'-Phosphate-Binding Protein (PLPBP). ACS Chemical Biology. 2019 [accessed 2020 Nov

11];15(1):254–261. http://dx.doi.org/10.1021/acschembio.9b00857. doi:10.1021/acschembio.9b00857.

- Gardy JL, Brinkman FSL. Erratum: Methods for predicting bacterial protein subcellular localization. Nature reviews. Microbiology. 2006 [accessed 2020 Aug 11];4(11):874– 874. http://dx.doi.org/10.1038/nrmicro1539. doi:10.1038/nrmicro1539.
- Ge M, Pan X-M. The contribution of proline residues to protein stability is associated with isomerization equilibrium in both unfolded and folded states. Extremophiles. 2009
 [accessed 2020 Nov 11];13(3):481–489. http://dx.doi.org/10.1007/s00792-009-0233-7. doi:10.1007/s00792-009-0233-7.
- GENI-ACT. n.d Bioinformatics Annotation of Coxiella burnetii Genes. Geni-act.org. [accessed 2020 Jul 13]. https://geni-act.org/communities/b1911ed2-f82f-43ca-add5-fc6f44cab5c9/group/c261eaa0-2dce-4264-bf64-efa3b7e33e39.
- Goldie AH, Sanwal BD. Genetic and physiological characterization of Escherichia coli mutants deficient in phosphoenolpyruvate carboxykinase activity. Journal of Bacteriology. 1980 [accessed 2020 Nov 11];141(3):1115–1121. http://dx.doi.org/10.1128/JB.141.3.1115-1121.1980. doi:10.1128/JB.141.3.1115-1121.1980.
- Gürtler L, Bauerfeind U, Blümel J, Burger R, Drosten C, Gröner A, Heiden M, Hildebrandt M, Jansen B, Offergeld R, et al. Coxiella burnetii pathogenic agent of Q (query) fever.
 Transfusion medicine and hemotherapy. 2014 [accessed 2020 Nov 9];41(1):60–72.
 http://dx.doi.org/10.1159/000357107. doi:10.1159/000357107.

- Harth G, Horwitz MA. Inhibition of Mycobacterium tuberculosis Glutamine Synthetase as a Novel Antibiotic Strategy against Tuberculosis: Demonstration of Efficacy In Vivo. Infection and Immunity. 2003 [accessed 2020 Nov 11];71(1):456–464. http://dx.doi.org/10.1128/iai.71.1.456-464.2003. doi:10.1128/iai.71.1.456-464.2003.
- Heinemann IU, Jahn M, Jahn D. The biochemistry of heme biosynthesis. Archives of Biochemistry and Biophysics. 2008 [accessed 2020 Nov 8];474(2):238–251. doi: https://doi.org/10.10 16/j.abb.2008.02.015.
- Hutton CA, Perugini MA, Gerrard JA. Inhibition of lysine biosynthesis: an evolving antibiotic strategy. Molecular Biosystems. 2007 [accessed 2020 Nov 11]. http://dx.doi.org/10.1039/b705624a. doi:10.1039/b705624a.
- Ito T, Yamamoto K, Hori R, Yamauchi A, Downs DM, Hemmi H, Yoshimura T. Conserved Pyridoxal 5'-Phosphate-Binding Protein YggS Impacts Amino Acid Metabolism through Pyridoxine 5'-Phosphate in Escherichia coli. Applied and Environmental Microbiology. 2019 [accessed 2020 Nov 11];85(11). http://dx.doi.org/10.1128/AEM.00430-19. doi:10.1128/AEM.00430-19.
- Jansonius JN. Structure, evolution and action of vitamin B6-dependent enzymes. Current Opinion in Structural Biology. 1998 [accessed 2020 Nov 11];8(6):759–769. http://dx.doi.org/10.1016/s0959-440x(98)80096-1. doi:10.1016/s0959-440x(98)80096-1.
- Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein science: a publication of

the Protein Society. 2003 [accessed 2020 Nov 11];12(8):1652–1662. http://dx.doi.org/10.1110/ps.0303703. doi:10.1110/ps.0303703.

- Kantrowitz E, Lipscomb W. Escherichia coli aspartate transcarbamylase: the relation between structure and function. Science. 1988 [accessed 2020 Nov 11];241(4866):669–674. http://dx.doi.org/10.1126/science.3041592. doi:10.1126/science.3041592.
- Khedkar GD, Prakash B, Khedkar CD, Chopade BA. Nucleic Acids. In: Encyclopedia of Food and Health. Elsevier; 2016. p. 84–92. http://dx.doi.org/10.1016/b978-0-12-384947-2.00487-6. doi:10.1016/b978-0-12-384947-2.00487-6.
- Klug WS, Cummings MR, Spencer CA, Palladino MA. Concepts of Genetics. 11th ed. Harlow (England): Pearson Education; 2015.
- Koebnik R, Locher KP, Gelder PV. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Molecular Microbiology. 2000 [accessed 2020 Nov 10];37(2):239– 253. http://dx.doi.org/10.1046/j.1365-2958.2000.01983.x. doi:10.1046/j.1365-2958.2000.01983.x.
- Kozlowski LP. Calculation of protein isoelectric point. Isoelectric.org. [accessed 2020 Aug 13]. http://isoelectric.org/calculate.php.
- Labedan B, Xu Y, Naumoff D, Glansdorff N. Using Quaternary Structures to Assess the Evolutionary History of Proteins: The Case of the Aspartate Carbamoyltransferase.
 Molecular Biology and Evolution. 2003 [accessed 2020 Nov 11];21(2):364–373. http://dx.doi.org/10.1093/molbev/msh024. doi:10.1093/molbev/msh024.

- Lehninger AL, Nelson DL, Cox MM, Winslow S. Principles of biochemistry. 6th ed. New York, (NY): W.H. Freeman; 2013.
- LipoP 1.0 Server. Dtu.dk. [accessed 2020 July 23]. http://www.cbs.dtu.dk/services/LipoP/
- Macol CP, Tsuruta H, Stec B, Kantrowitz ER. Direct structural evidence for a concerted allosteric transition in Escherichia coli aspartate transcarbamoylase. 2001 [accessed 2020 Nov 12];8:423–426. http://dx.doi.org/10.1038/87582. doi:10.1038/87582.
- Matte A, Tari LW, Goldie H, Delbaere LTJ. Structure and Mechanism of Phosphoenolpyruvate Carboxykinase. Journal of Biological Chemistry. 1997 [accessed 2020 Nov 11];272(13):8105–8108. http://dx.doi.org/10.1074/jbc.272.13.8105. doi:10.1074/jbc.272.13.8105.
- Mills CL, Beuning PJ, Ondrechen MJ. Biochemical functional predictions for protein structures of unknown or uncertain function. Computational and Structural Biotechnology Journal. 2015 [accessed 2020 Nov 12];13:182–191. doi:10.1016/j.csbj.2015.02.003
- McCaul TF, Williams JC. Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations. Journal of Bacteriology. 1981 [accessed 2020 Nov 11];147(3):1063–1076. http://dx.doi.org/10.1128/JB.147.3.1 063-1076.1981. doi:10.1128/JB.147.3.1063-1076.1981.
- Minnick MF, Raghavan R. Genetics of Coxiella burnetii: on the path of specialization. Future Microbiology. 2011 [accessed 2020 Nov 12];6(11):1297–1314. http://dx.doi.org/10.2217/fmb.11.116. doi:10.2217/fmb.11.116.

- Nakai K. Protein sorting signals and prediction of subcellular localization. In: Advances in Protein Chemistry. Elsevier; 2000. p. 277–344. http://dx.doi.org/10.1016/s0065-3233(00)54009-1. doi:10.1016/s0065-3233(00)54009-1.
- Omsland A, Cockrell DC, Howe D, Fischer ER, Virtaneva K, Sturdevant DE, Porcella SF, Heinzen RA. Host cell-free growth of the Q fever bacterium Coxiella burnetii.
 Proceedings of the National Academy of Sciences. 2009 [accessed 2020 Nov 11];106(11):4430–4434. http://dx.doi.org/10.1073/pnas.0812074106.
 doi:10.1073/pnas.0812074106.
- Patel C, Vaishnav A, Edwards BFP, Evans DR. Characterization and assembly of the Pseudomonas aeruginosa aspartate transcarbamoylase-pseudo dihydroorotase complex.
 PloS One. 2020 [accessed 2020 Nov 11];15(3).
 http://dx.doi.org/10.1371/journal.pone.0229494. doi:10.1371/journal.pone.0229494.
- Pathania R, Brown E. Small and lethal: searching for new antibacterial compounds with novel modes of action. Biochemistry and Cell Biology. 2008 [accessed 2020 Nov 11]. http://dx.doi.org/10.1139/o08-011. doi:10.1139/o08-011.

Phobius. Sbc.su.se. [accessed 2020 Aug 7]. https://phobius.sbc.su.se/.

Protein BLAST: search protein databases using a protein query. Nih.gov. [accessed 2020 Jul 23]. https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch &LINK_LOC=blasthome.

- PSORTb Subcellular Localization Prediction Tool version 3.0. Psort.org. [accessed 2020 Aug 6]. https://www.psort.org/psortb/.
- Robertson P, Abdelhady H, Garduño RA. The many forms of a pleomorphic bacterial pathogen the developmental network of Legionella pneumophila. Frontiers in microbiology. 2014 [accessed 2020 Nov 11];5:670. http://dx.doi.org/10.3389/fmicb.2014.00670. doi:10.3389/fmicb.2014.00670.
- Rollauer SE, Sooreshjani MA, Noinaj N, Buchanan SK. Outer membrane protein biogenesis in Gram-negative bacteria. Philosophical transactions of the Royal Society of London.
 Series B, Biological sciences. 2015 [accessed 2020 Nov 9];370(1679).
 http://dx.doi.org/10.1098/rstb.2015.0023. doi:10.1098/rstb.2015.0023.
- Schneider G, Fechner U. Advances in the prediction of protein targeting signals. Proteomics. 2004 [accessed 2020 Nov 9];4(6):1571–1580. http://dx.doi.org/10.1002/pmic.200300786. doi:10.1002/pmic.200300786.
- Schneider G, Käck H, Lindqvist Y. The manifold of vitamin B6 dependent enzymes. Structure. 2000 [accessed 2020 Nov 9];8(1). http://dx.doi.org/10.1016/s0969-2126(00)00085-x. doi:10.1016/s0969-2126(00)00085-x.
- Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic acids research. 1990 [accessed 2020 Aug 19];18(20):6097–6100. http://dx.doi.org/10.1093/nar/18.20.6097. doi:10.1093/nar/18.20.6097.

- Schubert HL, Raux E, Matthews MA, Phillips JD, Wilson KS, Hill CP, Warren MJ. Structural diversity in metal ion chelation and the structure of uroporphyrinogen III synthase.
 Biochemical Society Transactions. 2002 [accessed 2020 Nov 9];30(4):595–600. http://dx.doi.org/10.1042/bst0300595. doi:10.1042/bst0300595.
- Shoolingin-Jordan PM, Al-Daihan S, Alexeev D, Baxter RL, Bottomley SS, Kahari ID, Roy I, Sarwar M, Sawyer L, Wang SF. 5-Aminolevulinic acid synthase: mechanism, mutations and medicine. Biochimica et biophysica acta. Proteins and proteomics. 2003 [accessed 2020 Nov 9];1647(1–2):361–366. http://dx.doi.org/10.1016/s1570-9639(03)00095-5. doi:10.1016/s1570-9639(03)00095-5.

SignalP-5.0. Dtu.dk. [accessed 2020 July 23]. http://www.cbs.dtu.dk/services/SignalP/

- Takagi H. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Applied microbiology and biotechnology. 2008
 [accessed 2020 Nov 9];81(2):211–223. http://dx.doi.org/10.1007/s00253-008-1698-5.
 doi:10.1007/s00253-008-1698-5.
- TMHMM Server v. 2.0. Dtu.dk. [accessed 2020 Jul 23]. http://www.cbs.dtu.dk/services/TMHMM/
- Tortora GJ, Funke BR, Case CL. Microbiology: an introduction. 12th ed. Harlow (England): Pearson Education; 2018.

Woldehiwet Z. Q fever (coxiellosis): epidemiology and pathogenesis. Research in veterinary science. 2004 [accessed 2020 Aug 22];77(2):93–100. http://dx.doi.org/10.1016/j.rvsc.2003.09.001. doi:10.1016/j.rvsc.2003.09.001.

- Yang J, Kalhan SC, Hanson RW. What Is the Metabolic Role of Phosphoenolpyruvate Carboxykinase? Journal of Biological Chemistry. 2009 [accessed 2020 Nov 11];284(40):27025–27029. http://dx.doi.org/10.1074/jbc.R109.040543. doi:10.1074/jbc.R109.040543.
- Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics (Oxford, England). 2010 [accessed 2020 July 24];26(13):1608–1615. http://dx.doi.org/10.1093/bioinformatics/btq249. doi:10.1093/bioinformatics/btq249.
- Zhang L, Alfano JR, Becker DF. Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli. Journal of bacteriology. 2015 [accessed 2020 Nov 11];197(3):431–440. http://dx.doi.org/10.1128/JB.02282-14. doi:10.1128/JB.02282-14.