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Abstract

Andrew Lang (Master of Science in Applied Mathematics)
Black Holes and Singularities (35 pp. - 4 Chapters )
Directed by Doctor Kevin O’Neil

(77 words)

First, I give definitions and mathematical preliminaries. Secondly, I give a his-
tory of the derivation of Einstein’s field equations. From this basis, I present a
derivation of Schwarzschild’s solution. A discussion then follows of various types
of black holes: stationary, charged, rotating, and charged/rotating. I also give
a pictorial representation of the properties of each algebraically special solution.
Finally, I present a general definition of singularities along with a discussion of

closed trapped surfaces and naked singularities.
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CHAPTER I

Einstein’s Field Equations

“Absolute space, in its own nature, without relation to anything external, remains
always similar and immovable.”
“Absolute, true, and mathematical time, of itself, and from its own nature, flows
equably without relation to anything external.”
[FROM THE SCHOLIUM IN THE PRINCIPIA]
Sir Isaac Newton, 1642-1726

1.1 Metrics, Connections and Tensors

Definition
Given a vector space T, a metric tensor g is a symmetric type (0,2) tensor
which is non-singular in the sense that g(A,p) = 0, Vp € T = XA = 0.
Definition
A metric tensor g provides a vector space T with an inner product (X, ) of vectors
X, it € T which is defined as follows: (X, ) = g(A, ) = gapA°p®, VA, p € T.

Since the matrix [gq3] is non-singular it has an inverse [¢°°] such that
9% gre = ;.- (1.1)

It can be shown that ¢ are components of a type (2,0) tensor g [FN79]. In
the same way as above, the contravariant metric tensor g can be used to define

an inner product on the vector space T*, the dual space of T, as follows:
A 1) = g™ Xaps, YAy pp € T (1.2)

Definition
Given an N-dimensional differentiable manifold M, define the set of all tangent

vectors at a point P as the tangent space of M at P, and denote it by Tp(M).
1



Definition
Let P, (Q be two neighbouring points with coordinates z* and 2®4 6z respectively.
If we have a one-to-one correspondance between Tp(M) and To(M), we call the
corresponding vectors parallel.

It is natural to require such a correspondance to be (a) linear, and (b) to
reduce to the identity when P = Q. If we denote the vector at ) parallel to the
vector A* at P by A% 4+ §*\%, then (a) implies

AT 6N = YA (1.3)

where Y} is a matrix depending only on P and (). Whereas (b) is satisfied, to

first order in 6z, if

Y = 6 — T.6°, (1.4)

where the I'¢, depend only on P. We can therefore say that A* 4+ 6*A%, the vector

at @) coordinates z® + §z°, is parallel to A* the vector at P coordinates z¢, if
A% 4 §*A = (6F — T8 62°)\°, (1.5)

= "\ = T \b6ze. (1.6)

The quantities ['f, are called connection coefficients.
Definition

The absolute derivative Z2° of a vector field A*(u) along a curve v is defined to be

DX dx

dz°
du du '

R 1.7
be du ( )

Definition

The covariant derivative A% of a vector field A* is defined to be

a 8/\0‘ a a a
Ne=35c+ TE A =A% + T\ (1.8)

Now suppose that our connection is symmetric, i.e. I'f, = I'%, and is such that

if A* and p® are any parallel vector fields along any curve, then the inner product



gapA* 1’ is constant along that curve. That is, for any curve parametrised by wu,

DXx*  Du*
du  du

!) a, by
= a (guir/\ M ) =0
Dgﬂb> a, b D/\a 1 D;‘“‘ .
= ( du /\ +ga,b i M + qrth)\ .’f =0
)
:>(‘r{)'“)/\n |"_0

dt
p Azt

”d

=0

=0

= Jab; c)\a

Since this must hold for all A%, u® and %, our requirement that the inner product
JapA* 1’ of two parallel vector fields along a curve is constant along that curve

reduces to ggp,e = 0, or

Jabe = I 045 + T gaa. (1.9)
Relabelling, we have

Grea = o gae + T8, gba, (1.10)
and

Geap = T'59da + TlpGea- (1.11)

Taking (1.9) + (1.10) — (1.11) and using symmetry properties, we get

2Fgagdb = Gab,c + Ivec,a — Gea,bs

and contracting with %geb we get

1
FZa, = Egeb(gba,c + Gcba — gca,b)- (112)

Thus the condition above determines the connection coefficients in terms of gqp
and its derivatives. The statement that there exists a unique symmetric con-
nection which preserves inner products under parallel transport is known as the
fundamental theorem of Riemannian geometry. This connection is called the met-

ric connection.

If we define
1
Pabc = E(gac,b + Jba,e — gbc,a)a (]‘13)



then equation (1.12) gives

If, = "' Tase, (1.14)
and

e = Gy (1.15)
The traditional names for [y, and T, are Christoffel symbols of the first and
second kinds respectively. Now we are ready to derive some fundamental tensors
important in general relativity. From the definition of covariant differentiation for
a vector field A, we get

Aaip = Aap — TAa,

further covariant differentiation gives

)‘a;bc . ()‘a;b),c - PZc/\e;b - gc)‘a;e
- )\a,bc - Fd

ab,c

A — D900 — T8 (e — T%A0) — Tie(Aae — Toera)-

Interchanging indices and subtracting we get

Aagpe = Aazeb = Ry, (1.16)

where
RYy =Ty — T + Tolg — Taplec. (1.17)
R%,. is a type (1,3) tensor which is known as the curvature tensor. Since the

connection coefficients are determined by the metric tensor and its derivatives, so
is the curvature tensor. Thus for a type (0, 1) tensor field, a necessary and sufficient
condition for the commutability of covariant differentiation is that R, = 0. It
turns out that this is the necessary and sufficient condition for the commutability
of covariant differentiation for tensor fields of all types. We can thus make the
following interpretation.
Definition
A manifold is flat if at each point of it R, = 0, otherwise it is curved.

The curvature tensor satisfies important relations, for instance it can be shown
that Rf,, satisfies

Rgcd + Rgdb + RZbc =0. (1-18)
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This relation is known as the cyclic identity. We can also contract Rj,; to form a

new tensor known as the Ricei tensor, and we denote its components by

Ry = R,

abe*

(1.19)

We can further contract the Ricci tensor to get what is known as the curvature

scalar,

R = g®R, = R% (1.20)

We are now ready to follow Einstein’s “period of unremitting labour” to discover

the field equations of general relativity.

1.2 Einstein’s Field Equations

Galileo’s law states that if two objects, of different mass, are dropped together from
the same height they will strike the ground at the same moment. Einstein felt that
there was something suspect in the way Newton’s theory of gravitation accounted
for this. As a consequence of Galileo’s law and the attempt to incorporate gravity
into his special theory of relativity, Einstein proposed his principle of equivalence.
It states, in a freely falling (non-rotating) laboratory occupying a small region of
spacetime, the laws of physics are the laws of special relativity.

Now let us follow Einstein in one of his many thought experiments that arose
from his principle of equivalence. Imagine a ray of light sent across an accelerating

laboratory in space, because of the laboratory’s “upward” acceleration, the ray

!

N RN

AALELL S

Accelerating laboratory Laboratory on Earth

Figure 1.1: Einstein’s Equivalent Laboratories



will seem to curve “downwards”. Therefore, Einstein deduced, light sent in a ray
across a laboratory on a gravitating Earth will also have to curve downwards.
In other words, gravity bends light, see figure 1.1 above. For a full acount of
Einstein’s quest for the field equations see [Hof72] .

In 1911 he published a method of testing his hypothesis. He calculated that a
ray of starlight grazing the Sun ought to be deflected by 0.83” ! and later by his
full fledged theory as 1.75", see table 1.1 for experimental support.

Table 1.1: The Angle of Deflection of Light Grazing the Sun

Date Place of observation during a solar eclipse Result

1919 Greenwich Observatory 1.98 £+ 0.16"
1922 Lick Observatory 1.82 + 0.20"
1947 Yerkes Observatory 2.01 £ 0.27"
1972 Mullard Observatory 1.82 +0.14"

The next revelation that came to Einstein was if all motion was to be relative,
a variety of coordinate systems would apparently have to be tolerated, even if
their relationship to direct measurement seemed next to impossible to specify. He
realized that the equations of physics would have to be expressed in a way that
would place all spacetime coordinate systems on an equal footing, a requirement
that he later called the principle of general covariance. Einstein was in Prague
at the time, and lacking the mathematical tools to apply this principle, he made
little progress. In 1912 he returned to Zurich ? and his mathematical helpmate
Marcel Grossman. With the aid of Grossman, Einstein began to wield tensors,
things he evidently had some difficulty in at first grasping, as expressed in a letter

he wrote dated October 29%*,1912 :

“.. I occupy myself exclusively with the problem of gravitation and

now believe that I will overcome all difficulties with the help of a

11t should have been 0.87”, but arithmetic was never one of Einstein’s strong points.

2The place where ironically he had in 1895 failed his university entrance exam.



friendly mathematician here. But this one thing is certain: that in all
my life I have never before laboured at all as hard, and that I have
become imbued with a great respect for mathematics, the subtle parts
of which, in my innocence, I had till now regarded as pure luxury.

Compared with this problem, the original theory of relativity is child’s

play.”

In 1913 and again in 1914, he and Grossman published joint papers on their
research. They believed that the metric tensor g,,, which describes the geometry
of spacetime, should depend on the amount of gravitating matter in the region in

question. They therefore suggested the equation
g = k1", (1.21)

where « is some coupling constant and 7#” is the stress-energy tensor. T»” is a
measure of the energy density, momentum density, and stress as measured by any
and all observers at an event. Equation (1.21) looks plausible because g*” and
T* are symmetric, and ¢4/ = 0 in agreement with T4 = 0. However equation

(1.21) does not reduce to Poisson’s equation,
V2V = 47 Gp, (1.22)

in the Newtonian limit as it should do to be consistent. In retrospect it is amazing
and heartbreaking how close they came to achieving their goal. Einstein later
remarked that he and Grossman had considered the actual field equations only to
discard them for what at the time seemed compelling reasons.

In 1915, Einstein published his hypothesis
R* = gT*", (1.23)

where R*” is the Ricci tensor, but R/ # 0. Later in the same year he modified

the equation to what is known today as Einstein’s field equations,

1
G* = R — ~Rg" = kT*, (1.24)



which reduces to Poisson’s equation in the Newtonian limit and satisfies the con-
dition Gt = 0.
The left hand side of equation (1.24) is the Einstein tensor. Comparing Ein-

stein’s equation with Poisson’s, we identify the coupling constant « as —c’{G. Ther-
fore an alternative form of Einstein’s equations is

_ —87 G

ct

R*

(TW—%TMO. (1.25)



CHAPTER 11

Schwarzschild’s Solution

“A luminous star, of the same density as the Earth, and whose diameter should
be two hundred and fifty times that of the Sun, would not, in consequence of its
attraction, allow any of its light rays to arrive at us; it is therefore possible that

the largest luminous bodies in the universe may, through this cause, be invisible.”

P.S. Laplace(1798)

2.1 The Schwarzschild Solution

Einstein’s equations are in general very difficult to solve as they possess a high

degree of non-linearity. The problem becomes easier if we settle for algebraically

special solutions. The first exact solution was obtained in just such a manner by

Karl Schwarzschild in 1916. I will present here a simple derivation of his solution.
Assume that

(a) the field is spherically symmetric,

(b) the spacetime is empty, and

(c) the spacetime is asymptotically flat.

Schwarzschild postulated a line element of the form
c?dr? = A(r)dt? — B(r)dr? — r?d6* — r®sin® 0 d¢?, (2.1)
where A(r) and B(r) are to be determined. In flat spacetime the line element is
Adr? = Adt? — dr?t — 2 d6* — r?sin® 0 d¢?, (2.2)
and thus assumption (c) imposes boundary conditions on A(r) and B(r) as follows:

A(r) — ¢* and B(r) —» 1 as r — oo.
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From equation (1.7), the condition for a parallel field of vectors along a curve

in our spacetime is given by

u' = 0. (2.3)

Definition

We may characterise a curve in a manifold as being a geodesic if there exists a

= do®

parametrisation of it such that the tangent vectors A constitute a parallel

— du
\ . . SRR . o _ dz°
vector field. Such a parameter is called an affine parameter. Substituting A\* = 4=
in equation (2.3) we get
2gn d® dxe
g =0, (24)
du? du du

as the equation for affinely parametrised geodesics in our spacetime manifold.

Now the Lagrangian of equation (2.1) is [FN79]

L5, 27) = L (A)EE = B —r24 — ¥ sin 0 ), (25)

where dots denote differentiation with respect to an affine parameter u. Partial

differentiation gives

= a0 = o (57) = A0+ Ay
% - _B() = % <%) — _B(r)i — B'(r)i%,
(Z_g = 20204 = % (g_z_) = gin? O(—1r2¢ — 2rid — 22 cot 6 04),
and
T T
‘%g = —1r?sinfcos b ¢?,
oL

5 = "
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where primes denote differentiation with respect to the radial coordinate r. Sub-

stitution of the above partial derivatives into the Euler-Lagrange equation

d (c‘)L) oL — 0, (2.6)

du \dic)  Oxe
gives,
. A
t 't=0 2.7
+ A(’I‘)7 ) ( )
. Ar) o Br) " g2 T 2p 02
' gt — - 6 ¢ = 2.
"+380) taBey Bm)! BE o= (28)
6+ 27"9 —sinfcosf ¢* =0, (2.9)
,,.
¢'+2¢q's+2cot00'q's=o. (2.10)
-

Now label the coordinates according to z° = t,2! = r,z? = 6,2° = ¢, and
write out the non-vanishing terms of equation (1.29) remembering to double the
multipliers of the cross-terms z#2” (u # v) because they have two terms of the

L AN TRV
sum I'), z#z":

i+ oI, 1t =0, (2.11)

# 4+ T2 + T 72 4 TL,02 + Th,¢2 =0, (2.12)
6+ 212,76 + T2,4% = 0, (2.13)

é + 2T3.76 + 213,66 = 0. (2.14)

Comparing equations (2.7)-(2.10) with equations (2.11)-(2.14), and equating,
we get equations for the connection coefficients as follows:

1 A'(r)

o _ A(r _
I‘01 —24,4(7%1 Foo—ma

1 __ B'(r) . T
Fll - FZQ -

2B(r)? B(T),
rs, =1, T3 =—sinfcosd,
Iy, =1 T3 =cotd

From Equations (1.7) and (1.9) we have the Ricci tensor

R, =T¢,, —T° +T°T% —T° T

no,v uv,o po py uv=- po*
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By substituting the connection coefficients obtained above into R,, = 0, we are
using our results as a trial solution to the empty spacetime field equations and

this gives

B AH(,,.) r( Ar(; B’(?') ?) -
oo = =550y T 1B0) (A(-;-) t B(w')) T (2.15)
A A (A0 B()\ B ‘
B =52 ~ 140 (A(-;-) * 3(?-)) ;) =4 (2.16)
R L 4 (A1) (2.17)
27 B(r) 2B(r) \ A(r)
R33 = Rz-z 6111 0 = O, (218)

and R,, = 0 identically when p # v. Adding AJ(_)Z times equation (2.15) to

equation (2.16) gives
A'(r) N B'(r)
A(r) — B(r)

— A'(r)B(r) + A(r)B'(r) = — (A()B(r)) = 0. (2.19)

This implies A(r)B(r) = constant which can be identified using the boundary
conditions as ¢?. Substituting B(r) = #i) into equation (2.17) we get

d
A HrAG) = T (rAG) = ¢,

r

=rA(r) = SF(r+k),
, k A

= A(r) = |14 -] and B(r) = 1+7— :

7. :
By comparing the Schwarzschild line element, in the asymptotic region, to the

line element of flat spacetime in spherical polar coordinates we can conclude that

[FNT79]

(2.20)

Thus Schwarzschild’s solution for the empty spacetime outside a spherical body

of mass M is given by

| MG
Pdr? = & (1 _= ) di* — (1 2Mn> dr? — 12407 — 17 sin® 0 dg?. (2.21)

ey cr
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future pointing timelike vector

future pointing null vector
spacelike vector

ELSEWHERE

past pointing null vector

past pointing timelike vector

Figure 2.1: The Light Cone at an Event E

2.2 The Schwarzschild Black Hole

An important concept in relativity is that of a light cone. It is of central signifi-

cance in the analysis of causality, and gives valuable insight concerning spacetime

diagrams. An illustration of the definition of a light cone is in figure 2.1 above.
To be consistent with the standard in most texts, let us for convenience put

m = Gc—zM into Schwarzschild’s line element which then becomes

g 2m 2m\ 7! . . .
dr? = (1 - Ln-) Edt? — <1 - —) dr® — r2df* — r?sin® 0 d¢?. (2.22)
r r
Now suppose our massive object was a star that underwent symmetric gravita-
tional collapse, concentrating all of its mass into a single point at 7 = 0. Then our
line element becomes valid for all » with apparent spacetime singularities at r =0

2 2m\—1
! )

T

and r = 2m, where the metric components goo = (1 — and ¢g11 = (1 —
become infinite.

To help us understand exactly what is going on, let us examine the paths of
the ingoing and outgoing radial null geodesics. Without loss of generality we can

choose 6 = 2,4 = 0. This can be done because of the spherical symmetry of our
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Figure 2.2: Radial Null Geodesics in Schwarzschild Coordinates

solution. From equation (2.22) we see that the radial null geodesics (dr = 0) are

given by

-1
0 = <1 — E’ﬁ) Adt? — (1 — 2_m> dr?,

T
d 2
LA (1 - ﬂ) c,
-
1
= t = £—(r+2mln|r—2m|+ B), (2.23)
c

where B is a constant of integration. We see that for the ingoing null geodesics
t — oo as r — 2m*. It therefore appears that light (or other particles of zero
rest mass) aimed directly at our compacted star never gets past r = 2m. Does
this mean the area between r = 0 and r = 2m is unreachable by man, an area of
the universe where we cannot go? The answer is no; the Scwarzschild singularity
at » = 2m is really not a spacetime singularity at all. It is just a pathology of
the Schwazschild coordinates and given a suitable coordinate transformation, as
we shall see later, we can transform it away. In general, singularities of this type,
which can be transformed away, are known as coordinate singularities.

In the region r > 2m, the positive ¢ direction is timelike (goo < 0) and the
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inward r direction is spacelike (g11 > 0), as expected. On the contrary, for the
region r < 2m, the positive ¢ direction is spacelike (goo > 0) and the inward r
direction is timelike (g1; < 0). This can be seen easily by looking at the light
cones in figure 2.2 above. What does it mean that the radial direction becomes
timelike and the temporal direction becomes spacelike?

Imagine an astronaut in a spaceship travelling towards a collapsed star. He
can (before he reaches r = 2m) always turn around if he wants to by using his
rockets. The closer he gets to » = 2m, the harder it is for him to escape but in
principle, given enough rocket power, he always can. Now if he decides to cross
into the region r < 2m, a further decrease in his radial distance would correspond
to a passing of time. This situation is interesting because with the passage of
time his radial coordinate » must decrease; there is nothing the astronaut can do
about it. No force can make time stand still, and thus his journey is fated to end
with him crashing into the spacetime singularity at » = 0. Though he would most
probably die before this due to the massive gravitational tidal forces acting on
his body [MTW73] . Even light directed outward can never get past » = 2m and
the region, to an outside observer, appears completely black and is thus known
commonly as a black hole. As a consequence of this, any events that occur within
r = 2m can never be communicated to the outside universe. Therefore we call
the 4-sphere at r = 2m the event horizon of the black hole. It seems that we can
cross r = 2m, but once we have, we can never come back.

To get a line element that is valid for » < 2m let us replace ¢ by
.
=ct+r+2 l(——l). 2.24
v=ct+r+2mln o (2.24)

The coordinates (v,r,0,¢) are known as Fddington-Finkelstein coordinates and

the Schwarzschild line element in terms of them 1s

c*dr? = (1 - 2_m> dv? — 2dvdr — r2df* — r*sin® 0 d¢”. (2.25)

P

In our new coordinate system the radial null geodesics are given by

2m dv\? dv
L (k) IR il A
( r > <d7‘> dr 0,
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"' /'4; r/m
0 | 2 o 3 4 5

of mfallg

patlick

Figure 2.3: Radial Null Geodesics in Eddington-Finkelstein Coordi-

nates

N dv 0 dv 2r
=] = or ==
dr dr r—2m’
and integrating we get
v=A or v=2r+4mln|r—2m|+ B, (2.26)

where A and B are both constants.

In figure 2.3 above, oblique axes have been used so that the ingoing null
geodesics are inclined at 45° just as they are in flat spacetime diagrams. We
can see from the figure that the new line element is valid across r = 2m. Notice
how the light cones tilt over as we approach the black hole, by the time we reach
r = 2m, they have tilted so much that they actually point inwards towards the
singularity at » = 0. Again this illustrates the fact that once inside r = 2m,
nothing, not even light, can escape.

A superior coordinate system is given when we replace r and ¢ by spacelike
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and timelike coordinates, v and v defined by

1
r 2 _r i
=(1—— m g —, 2.2
! (1 Zm) b <4m) ' (2.27)
P \7 s t
={l—-— #m cosh | — ). 22
Y (1 Zm) erm cosh <4m) (2.28)

The coordinates (v,u, 0, ) are known as Kruskal-Szekeres coordinates. The

Schwazschild line element in terms of them is
3
2dr? = 321 e 5m (du? — dv?) + r?(d6? + sin® 6 dg®), (2.29)
”
where r is given implicitly by

<7—' - 1) e = u? — 2, (2.30)

2m
Choosing » = 0, we get u = sinh (ﬁ) and v = cosh (ﬁ) The singularity
at = 0 is located in Kruskal-Szekeres coordinates at v? — u?® = 1. Thus we
have two singularities at v = £(1 + u2)%. Notice from equation (2.30) that the

2, Thus we not only have

Schwarzschild region » > 2m is now given by u?® > v
two singularities but also two exterior solutions u > |v| and v < —|v|. This must
mean that our original Schwarzschild coordinates and the Eddington-Finkelstein
coordinates must be only a local coordinate patch on the full spactime manifold.
By transforming from Schwarzschild coordinates to Kruskal-Szekeres coordinates,
we have analytically extended the Schwarzschild metric to cover the whole mani-
fold [MTW73] .

Figure 2.4 below shows that we need two separate Schwarzschild coordinate

patches to cover the complete Schwarzschild geometry, whereas a single Kruskal-

Szekeres coordinate system will suffice. The radial null geodesics are given by

3
3216_#((111/2 — dv?) =0,
=

= du = *£dv,

= u=xv+ A,
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Figure 2.4: Radial Null Geodesics in Kruskal-Szekeres Coordinates

where A is a constant. In these coordinates the ingoing and outgoing null geodesics
are naturally inclined at 45° just as they are in flat spacetime diagrams. This does
not mean our spacetime is flat. Coordinate singularities, may be transformed away
but no coordinate transformation can eliminate gravity or the physical spacetime
singularity with infinite density, infinite spacetime curvature and infinite gravita-
tional tidal forces at » = 0. These facts are summarized in the following theorem.
Birkhoff’s theorem:
Let the geometry of a given region of spacetime
(1) be spherically symmetric, and
(2) be a solution to Einstein’s field equations in vacuum.
Then that geometry is necessarily a piece of the Schwarzschild geometry.
For a proof of Birkhoff’s theorem see [MTWT73] .

The fact that the singularity at » = 0 really exists and cannot be avoided
whatever coordinate system we choose, can be shown by calculating the curvature

movariant :
2
m
I = Ropea R = 48—

6
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Thus we can see that in every local Lorentz frame the spacetime curvature tends
to infinity as r — 0. We shall see later that the existence of singularities is closely

related to the existence of closed trapped surfaces.

2.3 Motion in a Circle

From equation (2.5) we can write the Lagrangian in relativistic Schwarzschild

coordinates (¢ = 1) in the equatorial plane (6 = %) as

=1 {(1 —@) 2 <1 —2—m—>_1 7"2—r2¢22]. (2.31)

”
Let dots denote differentiation with respect to 7. Partial differentiation of equation

(2.31) gives the canonical momenta

_d[’_(|_2ﬂ){‘

P =%
oL .
Pe="57= r’g,
and

oL . dpt _ _ 2m) P .
5 0 = p = <1 - t = constant, (2.32)
oL . dp4, o o2
9= dr 0 = py=r‘¢ = constant. (2.33)

For null geodesics the Lagrangian must be equated to zero. Doing this we get

2m\71 |, dr\? pﬁ
(-7 F‘Gﬂ}—ﬁ—m

and rearranging gives

dr\? p 2m
(E) +he (1 - __> = 2. (2.34)

By considering r = r(¢) and replacing r by u = % we get

2
1
) =2mu® —u® + ik (2.35)

du

fu) = (d_¢
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where D = %‘f— denotes an impact parameter. Differetiation of equation (2.35) with

respect to u and setting it equal to zero gives

f'(u) = 6mu® — 2u = 0,

which has a root u = (3m)~! or » = 3m. Now u = (3m)~' is a solution for
f(w) = 0if and only if D? = 27m?. Thus for D? = 27m? and u = (3m)~", j—; =0

and thus an allowed null geodesic is a circular orbit of radius 3m. Though 1t can
be shown that this orbit is unstable [Cha83] .

Light orbiting around a black hole can produce startling effects. For instance,
imagine a circular space-station around a black hole with radius r = 3m. A
scientist on the space-station knows that it is curved, as he would have seen its
shape on his journey to it. But looking down the corridor it appears completely
straight, see figure 2.5 below. In fact, he would see the back of his head some

distance down the corridor. Now suppose for a moment that he forgets that he

Figure 2.5: A Space-station at r = 3m
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is on a circular space station. Thus he assumes that moving along the corridor,
at any speed, he should not feel any centrifugal force. The only force he should
feel is the one due to gravity. This seems absurd because he is really moving
around in circles, not in straight lines. The faster he moves the more centrifugal
force he should feel. Suprisingly though, whatever speed he goes he will not feel
any centrifugal force, see [Abr93] . Thus not only does the space-station appear

straight, it actually in a way, “acts” straight.



CHAPTER III

Other Solutions

“As far as the laws of mathematics refer to reality, they are not certain; and as
far as they are certain, they do not refer ro reality.”
[FROM GEOMETRY AND EXPERIENCE]

Albert Einstein, 1879-1955

3.1 The Reissner-Nordstrom Solution

The Reissner-Nordstom solution is an exact solution of Einstein’s field equations.
It describes a static spherically symmetric asymptotically flat spacetime outside
a spherically symmetric charged massive body. We do not however expect any
large object to have a significant net charge and thus the solution may not be a
realistic one for black holes. The solution although algebraically special, as are all
the solutions in this text, is still valid and examination of it can give us valuable
insight into the nature of spacetime. It also provides a useful stepping stone to
the Kerr solution given in the next section.

The line element of Reissner-Nordstrom spacetime is most commonly given in
the form

. 2 2\, 2 N, o
cdr? = (1 o + 6—2) cdt? — (1 _am + e_) dr® — r¥d6? — r%sin® 0 d¢?,
r T 7

72

where m is the gravitational mass and e is the electric charge of the body. Suppose
that our massive body was a star that underwent symmetric gravitational collapse,
concentrating all of its mass and charge into a single point at r = 0. Then the
solution is valid for all r with apparent singularities at » = 0 and 1 — 22 + :—z = 0.

The solution of 1 — 22 4 :—z = 0 is given by

ry =m+vVm? — e (3.1)

.2
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and thus we have to consider two different situations:

(i) If €2 > m? the metric is nonsingular everywhere except for the irremovable
singularity at » = 0. In this case we have no event horizon to clothe the singularity
at 7 = 0, and it is in plain view for the whole universe to see. A singularity which
we can view is called a naked singularity. 1 will leave the discussion of naked
singularities until later.

(i) If e? < m? the metric has additional singularities at 74 and r_. Just as in the
Schwarzschild metric, these singularities are coordinate singularities and given a
suitable coordinate transformation we can transform them away.

For the following discussion assume e? < m?, which will give us real and
distinct 7, and r_. We shall see later that » = ry is an event horizon for the
Reissner-Nordstrom black hole in the same sense that » = 2m is an event horizon
for the Schwarzschild black hole. It will also be seen that » = r_ corresponds to
a “horizon” of sorts.

To get a line element that is valid for all » not equal to zero, let us replace ¢
by

2 2
v=ct+r+—Ft—In(r—ry) — ———In(r —r_). (3.2)
Ty — T Th =

Our line element then becomes
272 2m e 2 2 1092 2 2 2 i
dr® = |1 — — + — | dv® — 2dvdr — r*df* —r”sin” 0 d¢”. (3.3)
r r

In these coordinates the radial null geodesics are given by

: 2 . e? dv 2:51} —0
e 2 dr dr
R dv dv Oy

dr ' 5_7‘2—27117'4—82,

and integrating we get

2

22 e
v=A or v=2r+—F—Inlr—ry|—-———h|r—r_|+ B, (3.4)
— 7 r

?°_|_ e T o =
where A and B are both constants.

In figure 3.1 below the ingoing null geodesics are inclined at 45° just as
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Figure 3.1: Radial Null Geodesics for the Reissner-Nordstom Solution

previously done in figure 2.3. Figure 3.1 shows that the line element is valid across
both » = r; and r = r_. Notice how the light cones tip over as we approach the
black hole and by the time we reach r = r, they have tilted so far over that even
“outward” directed light goes “inward”. This confirms that r = r; is the event
horizon for the Reissner-Nordstrom black hole.

Between r; and r_ the light cones point toward » = r_ and all matter is
forced inwards. But when we reach r = r_, the light cones tip back towards
vertical and the paths of particles curve back away from the singularity. The
horizon r» = r_ is known commonly as a Cauchy horizon. The singularity appears
repulsive; no timelike geodesic hits it, though non-geodesic timelike curves and
radial null geodesics can.

If a falling observer is forced away from r = 0, he cannot escape past r = r,.
Where does he go? We must first analytically extend the Reissner-Nordstrom
metric to cover the whole manifold, i.e. we must make the manifold geodesically

complete. An analytic representation of the maximally extended spacetime can



be obtained by replacing r and ¢ by u and v defined by

— —a(t-r
tanu = —e~ “),
_ o(ttr
tan v = e ‘),
1 rr= and ] =]
where o = %3— and r, =7+ —- n(r—ry) = 50 n(r —r_).

In terms of these coordinates the Reissner-Nordstrom line element is

2

5,2 4 2m e
cdr’ = —— >
« r r

where r is defined implicitly by

N|=

tanutanv = —e** (r —r)zi(r —r_) M*.

l——+ —) csc 2u csc 2vdudv — r2df% — r?sin® 0 d¢?,

(3.7)

(3.8)

In figure 3.2 below, ingoing and outgoing null geodesics are at 45°. This enables

1= infinily 1 = infinity

r = infinity

Figure 3.2: The Analytic Extension of Reissner-Nordstrom Spacetime
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us to examine pictorially the underlying spacetime. If we follow the path of our
explorer as he crosses r = r_, he misses the singularity at r = 0, crosses r = r_
again and re-emerges into another asymptotically flat spacetime. It seems the
the Reissner-Nordstrom black hole can act as a bridge or wormhole to another
universe. The collapsing star, or whatever matter falls in after it, falls on through

the wormhole and out into, presumably, a cosmos much like our own.

3.2 The Kerr Solution

The Kerr solution [Ker63] is an exact solution which represents the stationary
axisymmetric asymptotically flat spacetime outside a rotating body. In Boyer

and Lindquist coordinates the Kerr metric can be given as

2mr

p?

(a®sin® 0 dp—dt)?, (3.9)

ds* = —p* (%2 + d02> —(r*+d*)sin® 0 d¢* +dt* —
where p?(r,0) = 72 + a%cos? § and A(r) = r? — 2mr + o®. The constants m and a
represent the mass and angular momentum per unit mass of the rotating body.
The Kerr solution reduces to the Schwarzschild solution when ¢ = 0. The line
element has apparent singularities at p? = 0 and A = 0. The solution of A =0 is
given by
re =m =+ vVm? — da?, (3.10)
and thus we have to consider two different situations:
(i) If a® > m? the metric is nonsingular everywhere except for the irremovable
singularity at r = 0,6 = . In this case we also have a naked singularity as we
again have no event horizon to clothe it.
(i) If a®> < m? the metric has additional singularities at 74 and r_. They will
turn out to be coordinate singularities that will correspond to an event horizon
and a Cauchy horizon respectively, just as in the Reissner-Nordstrom solution.
Now p? = 0 if and only if r = 0 and § = I (the equatorial plane). To increase
insight into this singularity, let us transform to Kerr-Schild coordinates (:1:, Y, 2, f),

where

rt+1y = (r+zia)sinf ¢t f (dbtdn) (3.11)
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z = rcos, (3.12)
n2 o2
/(dt-l— ’ zﬂ' dr) - (3.13)

In terms of these coordinates the Kerr metric is

>
I

ds* = di* —da? — dy® — d2? —
2o [r(wde + ydy) — a(edy — ydx)
rd 4 a22? r? + a?

2

+ 2 dz + df] \
"

where r is defined implicitly by
rt — (2?4 y? + 2 = a?) —d*P = 0. (3.14)

We can see from equation (3.14) that surfaces of constant r correspond to confocal
ellipsoids with principle axes coinciding with the coordinate axes. These ellipsoids
degenerate for » = 0 to the disc 2% + y? < @* z = 0, and thus the point (r =
0,0 = %) corresponds to the ring 2? + y? = a?,z = 0. Therefore the Kerr solution
is singular on a ring and not at a point as were the Schwarzschild and Reissner-
Nordstrom solutions.

For the following discussion assume 0 < a? < m?. Frame dragging is an
interesting property of the Kerr black hole. An observer is said to be stationary
relative to the local geometry if and only if he moves along a world line of constant
(r,8). An observer is said to be static relative to the black hole’s asymptotic
Lorentz frame if and only if he moves along a world line of constant (r, 8, ¢). The
four-velocity of a stationary observer in Boyer and Lindquist coordinates is given
by

u=u' (g—t + Q%) , (3.15)

and thus a stationary observer is static if and only if ) = % is zero.

The angular velocity §) of a stationary observer is limited because his four-

velocity u must lie within his future light cone and thus we have

Qmin < Q < Qmax, (316)
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where

Qin = w— ([w? = &a (317)

Yo
Doy = @ Ffl? s (3.18)

Jo¢

1 2mra
= —(Qin + Qnax , — . 3.19
v 2( + ) (r* 4 a?)? — Aa? sin? 4 ( )
We note that far from the black hole, we have rQ,i, = —1 and r{yax = +1. This

corresponds to the standard limits imposed by light in flat spacetime. We can

Symmetry axis

Event horizonr=r

+

Ergosphere

N

Ring singularity Stationary limit surface

Figure 3.3: The Ergosphere

also see that £, increases as r decreases and by the time we reach
r=rs(0) =m+ vVm? — a?cos? 4, (3.20)

Qmin becomes zero. This means that all observers inside r = r4(6), no matter
how hard they blast their rockets, can never have zero angular velocity relative
to distant stars. For this reason r = r,(6) is called the static limit and the region
ry <1 < rs(f) is called the ergosphere, see figure 3.3 above.

Like the Schwarzschild and Reissner-Nordstrom solutions, we can analytically
extend the Kerr metric to cover the whole spacetime manifold. As was shown, the
r = 0 singularity corresponds to a ring and we can actually analytically continue

r from positive values through the disc 2% + y? < a?,z = 0 to negative values.
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We could not do this for the Schwarzschild and Reissner-Nordstrom solutions. As
usual we can also analytically extend our metric through the event horizon r = r,
and the Cauchy horizon r = r_, see [HE73].

Figure 3.4 below is a pictorial representation of the maximally extended Kerr
solution along the axis of symmetry. The dotted lines correspond to lines of
constant r and the regions I, II and III represent ri. < r < 400, r_ <7 < ry
and —oo < r < r_ respectively. Just as the Reissner-Nordstrom solution is a
charged version of the Schwarzschild solution, the Kerr-Newman solution is a
charged version of the Kerr solution. It is of the same form as equation (3.9)
where A = 12 — 2mr + a? is replaced by A = 72 — 2mr + a? 4 €%. It can be shown
that the global properties of the Kerr-Newman solution are very similar to those

of the Kerr solution [MTWT73].

Figure 3.4: The Analytic Extension of Kerr Spacetime



CHAPTER IV

Spacetime Singularities

“Nature and Nature’s laws lay hid in night.
God said, Let Newton be! and all was light.”

Alexander Pope, 1688-1744
“It did not last, the Devil howling,

Ho let Einstein be, restored the status quo.”

Sir John Squire, 1884-1958

4.1 Asymmetrical Gravitational Collapse

Symmetric gravitational collapse produces black holes with spacetime singulari-
ties, but are these singularities a pathology of the high symmetry involved or will
they arise in general asymmetric collapse? To answer this question, we will first
need to get familiar with a few new concepts.

Definition [Pen65].

A closed trapped surface is defined to be a C? closed, spacelike, two-sphere T with
the property that the two systems of null geodesics which meet T, orthogonally
converge locally in future directions at 75.

In figure 4.1, a pictorial representation of a closed trapped surface is given.
The surfaces 57 and S, are the sufaces formed by light beams emitted inwards
and outwards from the surface T, respectively. Notice the surface T, need not be
symmetric in any way, and the light beams do not need to focus at an exact point.
But they do cross each other in a complicated way to form continuous surfaces,
with no holes.

We can see that closed trapped surfaces will form in any region of spacetime
where gravity is so strong that outward directed light gets dragged inwards. Thus

for black holes, closed trapped surfaces will definitely form within event horizons.

30
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time

Figure 4.1: A Pictorial Representation of a Closed Trapped Surface

In fact, if there is a sufficient concentration of matter in a small enough region, a
closed trapped surface will form [Cla87]. We proceed by giving a precise definition
of singularities [Sch71].

Definition

If a spacetime (M, g) is timelike or null geodesically incomplete, we say that the
termination point of a timelike or null incomplete curve, together with all adjacent
termination points, is a singularity.

Notice that the definition makes no mention of infinite curvature. When using
this more general definition, a singularity is really a hole or edge of spacetime
and need not be a point where we have infinite spacetime curvature. A black
hole produced by an infinitely compacted star would still have a singularity at
r = 0 because timelike and null geodesics terminate there. The usual idea of what
singularities are, is contained within the definition. Singularities which also have
associated infinte curvature are generally known as curvature singularities.

I will now state one of the most powerful of a wide class of singularity theo-

rems. For a proof see [HET3].
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Theorem [HP70]
A spacetime (M, g) necessarily contains incomplete, inextendable timelike or null
geodesics if, in addition to Einstein’s equations the following four conditions hold;
(i) R KK® > 0 for every non-spacelike vector K (reasonable energy condition);
(ii) The manifold is “general”, that is every non-spacelike geodesic contains a point
at which K[, Ryjcqe KKK d # 0, where K is the tangent vector to the geodesic.
(iii) There are no closed timelike curves (causality condition);
(iv) The manifold contains a closed trapped surface.

From the theorem we can see that if certain reasonable assumptions are made,
deviation from spherical symmetry cannot prevent spacetime singularities from

arising.

4.2 Naked Singularities

The theorem of the previous section proved that under certain reasonable assump-
tions, a trapped surface is a sufficient condition to produce a singularity. It is not
a necessary condition and the question remains, can singularities form in the ab-
sence of closed trapped surfaces? If they can, they will be exposed for the whole
universe to see. In 1969 Roger Penrose proposed what he called a cosmic censor

hypothesis : [Pen69]

“.. We are thus presented with what is the perhaps the most fun-

damental unanswered question of general-relativistic collapse theory,
namely: does there exist a ‘cosmic censor’ who forbids the appearance

of naked singularities, clothing each one in an absolute event horizon?”

This is now known as the weak cosmic censor hypothesis. A stronger idea is
the strong cosmic censor hypothesis, see [PenT4], which asserts that a “physically
reasonable” spacetime must be globally hyperbolic.

We know that the singularity in the Schwarzschild black hole is not visible to
us. Even inside the event horizon the singularity always lies in our future, until we

hit it. In contrast, for the Reissner-Nordstrom and Kerr black holes, once we travel
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inside the inner Cauchy horizon r = r_, the singularity lies in our past as well
as our future and is thus naked. Is this a counterexample to the cosmic censor
hypothesis? Examination of the time dislocation of an infalling observer as he
crosses r = r_, reveals that he can witness, by looking outwards, the whole future
history of the universe passing by in one fleeting moment. Besides vapourizing
him, the energy of all the light coming in will create another singularity along
the Cauchy horizon r = r_. Thus we cannot even get inside » = r_ and the
singularity at » = 0 is indeed not naked.

As mentioned earlier, if the charge or angular momentum per unit mass of a
black hole is large enough, no event horizon forms and its singularity becomes
naked. It can be shown that this also is a false assumption [Dav81].

Another argument for violations of strong cosmic censorship comes from what
is known as Hawking radiation [Haw75]. By considering quantum processes around
black holes, Hawking discovered that black holes actually evaporate. From this
evaporation process, it can be shown that if the universe is open or flat and given
enough time, a contradiction with global hyperbolicity can be obtained. This
argument, it should be noted, does not itself show there exists a naked singularity
in the sense of an incomplete spacelike or null geodesic. It is also internally
inconsistent. One of the physically reasonable conditions for cosmic censorship is
an energy condition which is violated when the Hawking quantum processes are
taken into account.

On the other hand, several theorems have been proved. While not establishing
cosmic censorship, they have limited the sorts of naked singularities to the kind
that can occur where the curvature is fairly low [New85].

This was the original idea of cosmic censorship in the beginning. Singularities
should be associated with curvature, and that this curvature in turn should focus
geodesics that lead to closed trapped surfaces that clothe the singularities. Thus

it seems that if there is a cosmic censor, he does his job with great subtlety.
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