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Abstract: Solid acid (heterogeneous) catalysts have a unique advantage in esterification and transesterification reac-
tions which enhances the use of high acid value oil to be used as feedstock for synthesis of biodiesel. Various solid
acid catalysts such as resins, tungstated and sulfated zirconia, polyaniline sulfate, heteropolyacid, metal complexes,
sulfated tin oxide, zeolite, acidic ionic liquid, and others have been explored as potential heterogeneous catalysts.
The activity of the catalyst differs slightly resulting in moderate to high conversion and yield. The reuse of the solid
catalyst is governed by their deactivation, poisoning, and the extent of leaching in the reaction medium. The applica-
bility of these catalysts for synthesis of biodiesel along with their reusability aspect is discussed in this review.

© 2010 Society of Chemical Industry and John Wiley & Sons, Ltd

Keywords: solid acid catalysts; calcinations; activity; leaching; reuse; biofuels

Introduction Heterogeneous catalysts have the benefit of easy separation
from the product formed without requirement of wash-
evelopment of heterogeneous catalysts has been a ing. Reusability of the catalyst is another advantage of the
D relatively recent area of research in the synthesis of heterogeneous catalyst.
biodiesel. The need for development of heterogene- Heterogeneous catalysts are categorized as solid acid and
ous catalysts has arisen from the fact that homogeneous cat- solid base. Solid base catalysts include a wide group of com-
alysts used for biodiesel development pose a few drawbacks. pounds in the category of alkaline earth metal hydroxides,
These drawbacks include washing of biodiesel with water hydrotalcites/layered double hydroxides, alumina loaded
to remove the catalyst present which results in wastewater with various compounds, zeolites, and various other com-
generation and loss of biodiesel as a result of water washing. pounds showing high basicity coupled with active basic
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sites, pore size, and other parameters. Solid base catalysts
have been quite successful with high conversion and yield of
biodiesel obtained. However, they are sensitive to the pres-
ence of free fatty acids and thus solid acids have a preference
over solid base catalysts. Excellent review papers on solid
catalysts are available.'™® This review focuses exclusively
on solid acid catalysts as potential heterogeneous catalysts
for biodiesel synthesis applied in recent publications. Solid
acid catalysts have been used in various industrial applica-
tions. The solid acid catalysts differ in acidity, surface area,
mechanical resistance, thermal and hydrothermal stability,
and cost of production. Hence, a catalyst may be chosen
on the requirements needed for synthesis of a compound.
Nevertheless, they indeed are good alternates to the homo-
geneous catalysts such as H,SO, and HF.? Heterogeneous
solid acid catalysts can simultaneously catalyze esterifica-
tion and transesterification reactions.® Thus, the application
of such catalysts, which are efficient in both of these reac-
tions, is preferable as most non-edible oil and waste cooking
oil possesses high acid value that cannot undergo alkaline
transesterification without reduction in acid value. In such
feedstock with high acid value, biodiesel synthesis becomes a
two-step process with acid esterification reaction followed by
alkaline transesterification. In addition to their easy removal
and reusability, solid acid catalysts do not cause corrosion
as found with common acid homogeneous catalysts, such as
sulfuric acid. As the heterogeneous catalysts are insoluble
in the oil and methanol phase, they require high tempera-
ture for an optimum yield of biodiesel. The application of
heterogeneous catalysts for production of biodiesel in the
industrial perspective warrants for minimal energy require-
ment. This can be achieved if the heterogeneous catalysts are
prepared easily and need moderate reaction conditions. The
leaching aspect is another important criterion that governs
the suitability of a particular catalyst. Hence, there is a need
for development of heterogeneous catalysts that can produce
biodiesel at conditions (e.g. temperature and pressure) com-
parable to that used in homogeneous catalysis.” This review
deals with the recent publications dealing with catalyst
preparation, operating reaction conditions, reusability, and
feasibility of the catalyst.

Solid base catalysts have higher catalytic performance for

transesterification than solid acid. However, the latter is
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preferred over the former because of simultaneous esterifica-
tion and transesterification for feedstock possessing high

acid value.®

Solid acid catalyst

In general, a catalyst that is to be used for synthesis of
biodiesel should be selective, specific, and result in esterifi-
cation/transesterification with high conversion and yield of
biodiesel. A solid acid catalyst should posses high stability,
numerous strong acid sites, large pores, a hydrophobic sur-
face providing a favorable condition for reaction, and should

also be economically viable.

Resins and membranes

Ion-exchange resins are composed of copolymers of divinyl-
benzene, styrene, and sulfonic acid groups grafted on ben-
zene. Their catalytic activity depends strongly on swelling
properties as swelling capacity controls the reactant’s acces-
sibility to the acid sites and hence their overall reactivity.
Ion-exchange resins have often been used for esterification
as well as transesterification reactions. These ion-exchange
resins have a cross-linked polymeric matrix on which the
active sites for the esterification reaction are due to protons
bonded to sulfonic groups.’ The surface area and pore size
distribution of the resin is characterized by the content of
the cross-linking component. Lower cross-linking is known
to cause higher swelling of ion-exchange resins. Swelling
capacity, in turn, controls the reactant’s accessibility to the
acid sites and thereby their total reactivity. Even with a low
swelling capacity, the ion-exchange resin has higher pore
diameter which can let the entrance of free fatty acids (FFAs)
to the inner surface of the catalyst leading to a better esterifi-
cation reaction.

Cation exchange resins (NKC-9, 001 x 7 and D61) were
tried by Feng et al.'’ and found to be effective in esterifica-
tion of high acid value (13.7 mg KOH/g) feedstock of waste
cooking oil (WCO) origin. NKC-9 had high water-adsorbing
capacity favoring its role in effective esterification. A high
average pore diameter of NKC-9 was helpful for reactants to
access the active sites of the resin resulting in greater than
90% conversion. The reaction conditions were 6:1 (alcohol
to oil) molar ratio, 24 wt% of the catalyst at 64°C for 4 h
of reaction time. The catalyst NKC-9 further reused up to

© 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69-92 (2011); DOI: 10.1002/bbb
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10 runs. The activity of the catalyst in subsequent reuse

did not deteriorate, but rather it was enhanced. This has
been attributed to the breakdown of the resin particles by
mechanical agitation, which increased the surface area of
the resin. After 10 runs, there was loss of the catalyst dur-
ing separation which ultimately decreased the free fatty acid
(FFA) conversion, so new resin was added. Kitakawa et al.'!
tried anion-exchange and cation-exchange resins as hetero-
geneous catalysts for batch and continuous transesterifica-
tion reaction of triolein in an expanded bed reactor and
found anion-exchange resin to perform better than the cat-
ion-exchange resin. The reason attributed to better perform-
ance of anion-exchange resin was the higher adsorption
affinity of alcohol on resin rather than triolein. The lower
cross-linking density and smaller particle size played more
significant roles in enhancing the reaction rate than porosity
and caused high reaction and high conversion rates. A high
conversion of 98.8% was achieved with the optimized reac-
tion conditions. The catalytic activity decreased in the sub-
sequent run due to leaking of hydroxyl ions from the resin.
A three-step regeneration method was adopted for the reuse
of the catalyst, and for four runs similar activity of the cata-
lyst was achieved. Ozbay et al.'* observed high average pore
diameter with high BET (Brunauer, Emmett, and Teller)
surface area to be more effective than high swelling (low
cross-linking level) of ion-exchange resin (Amberlyst-15) in
esterification reaction with waste cooking oil as feedstock.
High pore diameter enabled the free fatty acid molecules

to enter the inner surface of the catalyst and enhance the
esterification rate. Although moderate conditions (60°C and
2% catalyst) were sufficient for the reaction, the conversion
of FFA to biodiesel was low (45.7%). This low conversion is a
limitation of the study and further enhancement of the reac-
tion conditions is warranted for the feasibility of the catalyst
for esterification reaction.

Gelular and microporous type ion-exchange resins (EBD
100, EBD 200, EBD 300) were studied by Russbueldt and
Hoelderich'® and found to be successful for conversion of
high FFA oil to biodiesel. The catalysts used were EBD-

100 (with gelular polymer matrix), EBD-200 and EBD-300
(microporous resins), and Amberlyst-15. The low cross-
linking in EBD-100 caused high methanol uptake which

increased the catalyst volume 4.8 times by swelling in
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methanol. The other resins (EBD-200 and EBD-300) had
lower methanol uptake than EBD-100. 100% conversion
was obtained by EBD-100 and EBD-200 catalysts. With
EBD-300, 81% conversion was obtained. The activity of the
catalysts decreased in subsequent runs and to almost negli-
gible in the fourth run. The possible reason for deactivation
was attributed to the presence of salt contaminants in the
sunflower oil which blocked the acid sites. Thus, desalting
the feedstock has been suggested as precursor for the
transesterification of the feedstock with ion-exchange resin
catalysts. Addition of small amounts of water was found

to have only little influence on the completion of the reac-
tion as water was trapped in the methanol phase, and not
on the methyl ester in the oil phase, which maintained high

conversion of feedstock to biodiesel.'®

A cation-exchange
resin (D002) has been shown to effectively catalyze rapeseed
oil deodorizer distillate of high FFA value of 48.80 + 1.46
wt% corresponding to acid value of 97.61 + 1.87 mg KOH/g.
A high yield of 96% was obtained by 18 wt% catalyst at 9:1
alcohol to oil (A:O) molar ratio at 60°C for 4 h in a column
reactor. The catalyst was reused effectively for 10 cycles with
ayield greater than 88%."

A solid acid catalyst, poly vinyl alcohol (PVA) cross-linked
with sulfosuccinic acid possessing sulfonic acid groups for
transesterification of soybean oil, was found to be efficient
and superior to commercial resins such as Nafion membr-
anes and Dowex resins. Higher content of sulfonic groups led
to better performance by the PVA polymer cross-linked with
sulfosuccinic acid. Better catalytic activity of PVA has also
been attributed to high swelling capability of PVA in oil and
less in methanol. Due to this, oil concentration was found to
be more with PVA than with Nafion, resulting in higher cata-
lytic activity with PVA as catalyst. The reverse happened with
Nafion membrane as catalyst, where swelling was observed
in methanol but not in soybean oil. Swelling of Nafion mem-
brane in methanol made the catalyst lipophobic, resulting
in a low reaction rate."” Dowex monosphere 550 resin has
been effective for esterification and transesterification of oils
with higher FFA content. A conversion of 80% was obtained
at approximately 6:1 A:O molar ratio, 2 wt% catalyst, 45°C,
and 200 rpm stirring. Regeneration of the catalysts after each
experiment was desired because the conversion was reduced

to 25% after the first run. However, a leaching study of the

© 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69-92 (2011); DOI: 10.1002/bbb 71
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catalyst wasn’t conducted, which could have provided an
insight into the heterogeneity of the catalyst.'®
The effect of water on the esterification of FFA by solid acid

catalyst has been studied by Park et al."”

Amberlyst-15 was
found to be poisoned by the presence of water in the reaction
medium and its activity was substantially reduced in com-
parison to the homogeneous sulfuric acid catalyst. The pres-
ence of water resulted in poor accessibility of reactants to
the acid sites. This was overcome by a two-step esterification
process (addition of fresh methanol and catalyst to the reac-
tants in the second step), which increased the reaction rate
and reduced the reaction time. In the case of H,SO,, pres-
ence of water up to 5 wt% was found to be tolerable when the
methanol to oil ratio was 6:1.

The synthesis of biodiesel from silica functionalized with
4-ethyl-benzene sulfonic acid catalyst was carried out by
Aiba-Rubio et al."® Leaching was found to be predominant
in the first run and slowed down in subsequent runs. A high
temperature of 150°C deterred regeneration of the catalyst
for reuse as the organosulfonic acid sites were found to be
combusted. A significant difference in the activity of the
catalyst was observed between the first and second runs,
whereas the reaction rate was found to be similar for the
second, third, and fourth runs, which suggested that deac-
tivation of the catalyst occurred in the first run. All of the
products and reactants in general, and glycerol in particular,
were responsible for leaching of the catalyst. This leaching
was dominant in the first run which has been attributed
either to the loss of active acid sites or activity of acid sites
in formation of deactivating organic species. Thus, regen-
eration of the catalyst isn’t possible because the organosul-
fonic group will be combusted. Ion-exchange resins have
also found their applicability in purification of biodiesel
when a homogeneous catalyst, sodium methoxide, was
used. Although the ion-exchange resin wasn’t so efficient in
removal of methanol, it brought the glycerol level to the EN
14214 specification.'” Table 1 depicts the reaction conditions

of resins and membranes used as heterogeneous catalysts.

Superacid catalysts (Tungstated and sulfated
zirconia)

Acids that are stronger than H, = -12 corresponding to
the acid strength of 100% H,SO, are called ‘super acids’.

Review: Solid acid catalysts for biodiesel synthesis

Common super acids include HF (a Bronsted acid) and BF;

(a Lewis acid).?°

Zirconia has shown catalytic activity, and
also a good support for catalysts, owing to its high thermal
stability, stability under oxidizing and reducing conditions,
and the amphoteric character of its surface hydroxyl groups.
Sulfated zirconia and tungstated zirconia are examples of
solid super acids and exhibited high catalytic activities
because of active acid sites.”! Tungstated zirconia-alumina
(WZA), sulfated tin oxide (SO,/SnO,; STO), and sulfated
zirconia—alumina (SZA) were tried as solid super acid cata-
lysts for transesterification of soybean oil and esterification
of n-octanoic acid. More than 90% conversion during trans-
esterification was obtained at a temperature of 250°C with
WZA, with soybean oil as feedstock. During esterification of
n-octanoic acid, the catalysts WZA, SZA and STO showed
94, 99, and 100% conversion at 175°C. Conversion of WZA
and SZA catalyst further increased to 100% at 200°C.**
Various solid acid catalysts such as Amberlyst-15, Nafion-50,
supported phosphoric acid, sulfated zirconia (SZ), tungstated
zirconia (WZ), zeolite Hf, and ETS-10 H, along with solid
base catalysts, were compared with that of conventional
homogeneous acid and base catalysts for transesterifica-

tion of triacetin by Lopez et al.>* To obtain 50% conversion
with the solid acid catalysts, a large variance in time was
recorded. While only 10 min was needed for 50% conversion
of triacetin, the times needed by the solid acid catalysts were
150, 330, 538, and 2047 min for Amberlyst-15, SZ, Nafion-50,
and WZ, respectively. The catalysts showed decrease in
triacetin conversion (40-67%) after five reaction cycles of 2 h
each. The concentration of the species related to active sites
showed 80-95% of the original values and hence the cause
of deactivation was attributed to site blockage by adsorption
of intermediates and/or products formed that are more polar
than the original reactants.

Esterification of acetic acid and transesterification of
triacetin by tungstated zirconia (WZ) were performed by
Lopez et al.** The effect of calcination temperature on the
experiments and the nature of active sites for esterification
and transesterification reaction were observed. When cal-
cined at 400°C, the X-ray diffractogram showed the catalyst
to possess amorphous structure and small crystallites of
tetragonal zirconia. At high calcination temperature (500-

800°C), the catalyst was comprised primarily of tetragonal

72 © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69-92 (2011); DOI: 10.1002/bbb
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phase of zirconia. At >800°C calcination temperature, crys-
talline WOj; particles were formed. Increase in calcination
temperature resulted in loss of total surface area of the cata-
lyst which was due to loss of surface area of ZrO, structure.
This resulted in transformation of tungsten oxide from mon-
omeric to polymeric species. Calcination temperature was
found to strongly influence activity of the catalyst for both
the esterification and transesterification reactions, with the
optimum at 800°C. Loss of catalytic activity occurred due to
disappearance of heteropolyoxotungstate clusters, suggest-
ing it to be the catalyst active site.

Calcination temperature plays an important role in the
activation of the solid acid catalyst. A pioneering work on

1.2 where calcination

this aspect has been done by Kiss et a
temperature of 600-700°C has been found to be optimum
for sulfated zirconia catalyst for esterification of fatty acids.
Modified zirconias, namely titania zirconia (TiZ), SZ, and
WZ, have been used as heterogeneous catalysts for simul-
taneous esterification and transesterification by Lopez

et al.?®

The optimum calcination temperature was found to
be different for the three modified zirconias. The optimum
calcination temperature was found to be 500°C for SZ and
400-500°C for TiZ. Temperature higher than this results in
sulfur loss, which decreases the catalyst’s surface area and
ultimately loss of its activity. Presence of sulfate ions stabi-
lizes the zirconia structure and increases the surface area.
Of the three catalysts, WZ showed better activity over SZ
because of the easy generation of the former in the fixed bed
reactor. Also, SZ will have to be re-impregnated with H,SO,
for its regeneration which could lead to leaching of sulfur
and may be a hindrance in the production of biodiesel. TiZ,
although suitable for transesterification, was not found to be
suitable for esterification because of poisoning of its active
basic sites by carboxylic acids and hence has been reported
to be unsuitable for higher acid value feedstocks.

Zirconia-supported isopoly tungstate (WOs/ZrO,) was
prepared by impregnation of ammonium metatungstate, and
was used for transesterification of sunflower oil. Another
catalyst, zirconia-supported heteropoly tungstate was pre-
pared by the impregnation of silicotungstic acid and phos-
photungstic acid on zirconium oxyhydroxide. The activity
of zirconia-supported isopoly tungstate was better than

zirconia-supported heteropoly tungstate. WO;/ZrO, catalyst

YC Sharma, B Singh, J Korstad

calcined at 750°C gave 97% conversion of the feedstock to
biodiesel at 200°C with 15:1 methanol to oil molar ratio.
The catalyst was reused successfully after separating and
calcined at 500°C for 3 h in air. The catalyst was also used
to convert sesame and mustard oil to biodiesel, where con-
version of 93% and 95%, respectively, were obtained. After
removal from the solution of methanol, the catalyst showed
minor conversion of 7% and displayed potential prospect as
a heterogeneous catalyst.?”

WO;/ZrO, was pelletized and used in packed-bed continu-

ous reactor by Park et al.?®

for conversion of high FFA feed-
stock. Hexane and biodiesel were found to be good solvents
to enhance the miscibility of the oil and methanol, resulting
in yield of 65% in 1 h but took substantial time (20 h) to rise
to 85%. However, the conversion decreased thereafter to 65%
when the reaction time was increased to 140 h. The reason
attributed to this decreased yield with reaction time is the
deposition of soybean oil on the particles of the catalyst and
reduction of WO; by the feedstock oleic acid. The catalytic
activity was restored by calcination in air. Pelletized catalyst
resulted in less FFA conversion compared to that from the
powdered catalyst due to reduced BET surface area and pore
size distribution. The conversion of 65% was maintained for
140 h. Although Park et al.?® advocate packed-bed reactor for
large scale production of biodiesel using pelletized catalyst,
a low yield in comparison to powdered form deems further
justification. Leaching of SZ and impact of alcohol on its
deactivation at higher temperature was carried out to see its
potential as a heterogeneous catalyst by Suwannakarn et al.*’
It was found that at 100°C almost 70% of the sulfate ion

in the form of sulfuric acid was leached from the solution,
exhibiting homogeneous nature of the catalyst. The ability
of the sulfate to leach from sulfated zirconia was attributed
to the presence of ~-OH groups in the alcohol. Sulfuric acid
reacted with alcohol to form monoalkyl hydrogen sulfate
and dialkyl sulfate.

Sulfated zirconia catalysts were prepared using different
methods (such as solvent-free precipitation) by Garcia et al.*
to examine their activity as heterogeneous catalysts. Only SZ
prepared by solvent-free method gave an efficient conversion
(98.6% in methanol and 92% in ethanol) of soybean oil to
biodiesel in 1 h reaction time at 120°C. This has been attrib-

uted to the high quantity of acid sites. Low conversion with

© 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69-92 (2011); DOI: 10.1002/bbb 78
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ethanol has been attributed to the presence of 0.44% water
in ethanol compared to 0.08% in methanol. Conversion
with ethanol further increased to 96% when reaction was
carried out for 6.5 h. However, the limitation observed with
SZ was leaching of sulfate ions which resulted in significant
deactivation of the catalyst when reused. No conversion was
obtained with conventional zirconia, whereas standard sul-
fated zirconia prepared by precipitation and impregnation
method gave a poor conversion of only 8.5 + 3.8% under the
same conditions.

Lou et al.* reported on sulfated zirconia and niobic acid
(Nb,Os5.nH,0) used as catalysts for esterification and trans-
esterification of waste cooking oils with high (27.8 wt%) FFA
content to give a low yield of 44 and 16%, respectively, in
14 h reaction time. WO5/ZrO,, SO,*7/ZrO,, and Amberlyst
15 were used as heterogeneous catalysts by Park et al.,** with
all catalysts giving 93% conversion of FFA-bearing used
cooking oil. However, SO,*~ was leached in the reaction
medium using SO,*/ZrO, as catalyst, lessening its applica-
tion as a catalyst. Among the three catalysts, 20 wt% WO,/
ZrO, showed high catalytic activity and structural stability.
WO, /ZrO, in nanoparticle size supported on MCM-41 silica
exhibited acidic properties and was found to be suitable for
esterification of oleic acid. 100% conversion was obtained
with WO, loading of 15-20 wt% after activation at 700°C.
The catalyst was found to be stable even after being operated
at 200°C and was reusable for four cycles without leaching of
tungsten. However, the reaction conditions were a problem.
A high molar ratio of 67:1 A:O for 24 h reaction time and
18.7 wt% of catalyst at 65°C was needed for completion of
the reaction. High amount of methanol and high reaction
time increases the overall production cost of biodiesel.”> A
similar loading of WO; on ZrO, (i.e. 20 wt%) was observed
to be optimum for 96% FFA conversion from waste acid oil
by Park et al.** under optimized reaction conditions, which
included 9:1 A:O molar ratio, 0.4 g of catalyst/ml of oil, at
150°C for 2 h. Although tungsten leached in the reaction, the
catalytic activity was unaffected.

The catalytic activity and stability of sulfated zirconia and
sulfated titanium oxide were improved by addition of lanth-
anum.”” $O,*7/Zr0,-TiO,/La** prepared by precipitation
and impregnation method for synthesis of biodiesel showed

95% conversion efficiency and decreased to only 5% even

Review: Solid acid catalysts for biodiesel synthesis

after five runs. Loading lanthanum on the surface of ZrO,-
TiO, changed the chemical state of exterior atom and also
strengthened the interaction of SO,*~ with ZrO,-TiO,. The
catalyst was observed to be stable for the purpose of its reuse
and its activity was found to be better than SO,*7/Zr0,-TiO,
catalyst. Li et al.>*™" observed the same SO,*7/Zr0,-TiO,/
La** to work effectively for soapstock as feedstock. The con-
version efficiency of esterification and transesterification was
found to be 98.02 and 97.25% respectively, under moderate
reaction conditions. The catalyst SO,*7/ZrO,-TiO,/La’**

was also observed to be effective for simultaneous esterifica-
tion and transesterification of oil containing 60 wt% FFAs.
The catalyst developed was reused for five times without

any treatment and the yield observed after five cycles was
90.20 wt%, which is near the 92.8% yield obtained after the

first cycle. Kansedo et al.*®

prepared biodiesel from Cerbera
odollam using sulfated zirconia catalyst. Although optimi-
zation of variables affecting the reaction was not taken in
account, a high yield of 83.8% was obtained.

A carbon-based solid acid catalyst was prepared by Shu
et al.* by carbonizing vegetable oil asphalt and petroleum
asphalt. The high catalytic activity observed owing to its
high density and stability of acid sites, loose irregular net-
work, and the hydrophobic property of its carbon sheets
that prevented the hydration of -OH groups in the pres-
ence of water. The low surface area of 7.48 m*g ™! was an
indication that -SO;H groups were in the interior of the
catalyst. The large pores size of 43.90 nm was helpful for
the reactants to diffuse into the interior of the catalyst.
Increased catalytic activity was observed for the second
run and decreased subsequently in the third run. Increase
in catalytic activity has been attributed to swelling of the
catalyst in the presence of swelling agent. The leaching of
-SO;H groups was the cause of decreased catalytic activity
in the third run. Leaching of sulfate has also been reported
by Petchmala et al.,*” where conversion of feedstock to
methyl esters decreased from 90.1% to 35.0% in the next
run. Although the catalytic activity of the catalyst can be
restored by re-impregnation with sulfuric acid and re-
calcination, the leached sulfate in the product may cause
biodiesel to get off-specification. Table 2 depicts the reaction
conditions of tungstated and sulfated zirconia used as het-

erogeneous catalyst.
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Kiss et al.* have reported sulfated zirconia as the most
promising among the various solid acid catalysts (others
being zeolite, ion-exchange resin) tried for esterification
of dodecanoic acid. The catalyst was observed to be stable
towards thermal decomposition. The catalyst also did not get
deactivated in the organic phase in presence of small amount
of water. The activity of the catalyst dropped to 90% of the
original value and remained constant thereafter. The activity

was restored to the original value after re-calcination.

Polyaniline sulfate

Polyaniline sulfate deposited on carbon support has been
used as solid acid catalyst by Zieba et al.*! This catalyst has
the potential to overcome the limitations of sulfated zirconia
catalyst and has been chosen because of its easy prepara-
tion, handling, environmental and thermal stability, and

its insolubility in most inorganic solvents. The catalyst also
does not swell in methanol, methyl esters, and glycerol and
possesses a low surface area. The catalyst was prepared by

in situ polymerization of aniline on carbon support. Almost
negligible leaching of the catalyst occurred as evidenced by
low (2%) conversion obtained after filtering catalyst from
methanol in 30 min. However, a high molar ratio of 29:1 A:O
was needed to obtain high conversion. The catalytic activity
dropped to 10-11% after reuse of the catalyst for five times.
The acid capacity of the catalyst reduced to 80-95% of the

initial activity of the catalyst after the experiments.

Heteropolyacid (HPA)

Heteropolyacids (HPAs) are very strong Bronsted acids and
can be employed as either heterogeneous or homogeneous
catalysts depending of their composition and the reaction
medium. They are known to possess good thermal stabil-
ity, high acidity, and high oxidizing ability. Among the
heteropolyacids, 12-tungstophosphoric acid (H;PW,0,)
has been preferred over others because of its high activ-
ity. HyPW 1,0, displays a Keggin structure that is com-
prised of an oxygen tetrahedral-coordinated heteroatom
(POy) surrounded by 12 edge-shared oxygen octahedraly-
coordinated addenda atoms (WOy).** Although in general,
heteropolyacids work as homogeneous catalysts, they can
be transformed to solid acid catalysts by combining them

with monovalent cations such as NH,*, K*, Cs*, and Ag*.*?

YC Sharma, B Singh, J Korstad

The Keggin heteropolyacid as H;PW,,0, is soluble in
methanol and ethanol, while the ammonium salt is insoluble
in alcohol. They have been used as solid catalysts for hydra-
tion of isobutylene and polymerization of tetrahydrofuran.
Heteropolyacid is soluble in aqueous solution. However,

its solubility decreases on addition of Cs.** Their major
disadvantages, however, are low thermal stability and low
surface area. Homogeneous heteropolyacids (H;PW1,0,,
H,SiW,044, H3PMo,,0,, and H,SiMo,,0,,) have been
tried by Morin et al.*> where biodiesel was developed from
rapeseed oil using ethanol at moderate conditions. The
catalytic activity was not affected by the acid strength of the
various homogeneous heteropolyacids employed. Rather, the
proton solvation with molecule was found to be responsible
for the efficient transesterification reaction and found to be
fast with ethanol as compared to methanol.

To enhance the thermal stability and surface area of het-
eropolyacids, Narasimharao et al.*® used Cs,H;_ ,PW,0,,
with x ranging from 0.9 to 3, for esterification as well as
transesterification of palmitic acid and tributyrin. The
insoluble nature of the catalyst in polar media makes it a
good candidate as a heterogeneous catalyst. The most active
catalyst was observed with Cs, in the range x = 2.0-2.3,
with 100% conversion with Cs = 2.3 in 6 h reaction time.
Performance of the catalyst was far better than other solid
acid catalysts such as SO,/ZrO,, Nafion, and H ZSM-5 for
esterification reaction. The catalyst was also found to be suit-
able for simultaneous esterification and transesterification
reaction with 100% conversion of palmitic acid and 52% con-
version of tributyrin. The catalyst was then recycled 3 times
with minor loss of activity. Esterification of palmitic acid
by heteropolyacid catalysts has been performed by Caetano
et al.*’ Tungstophosphoric acid (PW), molibdophosphoric
acid (PMo), and tungstosilicic acid (SiW) immobilized on
silica by sol-gel technique were tried as heterogeneous cata-
lysts. PW was found to be the best catalyst among the three,
so it was further studied with different loading concentra-
tions on silica. PW-Silica2 (0.042 gpw/gsiiica) resulted in 100%
conversion of palmitic acid. The heterogeneous nature of
the catalyst was confirmed by centrifuging the catalyst dis-
solved in methanol for 72 h and then adding the methanol
to palmitic acid. Negligible conversion of the reaction con-

firmed the heterogeneous nature of the catalyst. PW-Silica2
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8 was found to esterify oleic acid and stearic acid as well.
2 Tungsten HPA catalysts are active for esterification as well
o
ko) as transesterification reactions. The activity of the catalyst
o) - L .
o S < was tried in homogeneous as well as heterogeneous media.
S Among the homogeneous catalysts were HPA hydrates,
g 2 = § § H3;PW,,040.25H,0, and H,SW,0,,.25H,0. The heteroge-
g S ow ~ @ neous catalyst used was Cs, sHy sPW,0,,. Sulfuric acid had
o~ I n U} Il 2.5120.5 1240
0l oo © © better activity than HPA in homogeneous medium, whereas
*g o TS Amberlyst-15 performed better than HPA in heterogene-
=353 S % . .
% g o\: = BE ous medium. In heterogeneous medium, the HPA catalysts
o] (o) B
Oc3c ~ Qo were leached. This can be avoided by severe pre-treatment of
° 2 the catalyst, but the resultant activity of the catalyst will be
é g 3 5 affected.*® Heterogenized HPAs such as H;PW,0,4,/SiO,,
c 9o . .
gse =& Cs,HPW,0,, and H;PW,0,/SiO, were studied as cata-
L o@e =£c¢ - .
E 8T~ EE 2 lysts for transesterification of rapeseed oil. These catalysts
58288 2
s ~— T T ' possessed Bronsted acidity of high strength and catalytic
o o_
5 = activity, better than H,SO, and H;PO,, but the acid strength
T g = didn’t necessarily correlate with catalytic activity. The cata-
T 5 O O -
COC) § EQ8 L 9 lyst was prepared by precipitation steps using precursor
—
o — solutions. The precipitate was recovered by centrifugation
= 5=
S £ o and then water washed. Based on the method of preparation,
P
_E = § % Cs,HPW,0,, offered good resistance to leaching of active
) = © .
Q_“)S qE> o g & phase present in the catalyst.*’
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- . The sol-gel hydrothermal method was used to prepare
jo)]
-(..93. &5 o D mesoporous polyoxometalate tantalum pentoxide composite
o © Qa0
-% _% 2 %v g g S solid acid catalyst (H;PW,,0,40/Ta,0s) and tried for esterifi-
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© DEE 2l cation reaction of lauric acid, which resulted in 99.9% yield
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E 58 § 3 % 5(,,\: with 7:1 alcohol to oil molar ratio at 78 + 2°C for 3 h reaction
5 a9®s
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s § g 2% g = ,i 82 § = g regeneration of the catalyst by boiling ethanol and wash-
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c 2 F NE |8 § g—uo) g X o E E E £ 6,2 ing with hexane overnight, 95.6-94.8% ester yields were
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o =3e |2 % '% =3 <% 2580 é ;?u o obtained after successive runs, and its reusability was con-
Q OBO L 5SS =29 2 . .
g 2 RQEeZQE 8 ESS sZEZ < % g ® firmed.”® A heteropoly solid acid catalyst (H,PNbW,,0,,/
I c OoN < Cnos0L200N2 ©
_ WO;-Nb,0;) has been shown by Katada et al.’! to have high
=
3 5 5 -(% catalytic activity when used for transesterification of triolein
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S8 £3 S< S s and methanol/ethanol. Calcination at 500°C gave the best
0T 3 2 o o8 . . .
3 g g ° 8 £ 8 g results. The high activity of the catalyst has been attributed
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3 25 = % 88 5 7 3 to strong Brensted acidity, bearing ester yield of 81%. The
= L1 < a o = E cw o . .
S § ° catalyst also worked in the presence of water in 95% ethanol.
H ©
o - . @ 2 £ Thus, crude alcohol can be used in the reaction, resulting
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) %‘ g te g g in lower production costs for biodiesel. The dissolution of
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] S ) 3 =L the catalyst was undetectable for niobium and low (<0.5%)
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for tungsten. A fixed-bed continuous flow reaction has been
proposed for large-scale production of biodiesel using the
catalyst, with easy separation.

Niobium oxide has been used to impregnate heteropoly
tungstate by Srilatha et al.*? 12-tungstophosphoric acid
(TPA) was impregnated on niobium oxide for this purpose.
Acid strength was found to increase with TPA content and
was optimum with 25 wt% loading on Nb,Os. A high con-
version of methyl esters (99.1 and 97.3%) were observed
with palmitic acid and sunflower oil, respectively with 4 h
reaction time at 65°C. Moderate calcination temperature
of 400°C was adequate for the performance of the catalyst.
Temperatures higher than 400°C for calcination led to deg-
radation of TPA to metal oxides, thus decreasing the cata-
lytic activity.

Zhang et al.”® used microwave-assisted transesterifica-
tion reaction to produce biodiesel by heteropolyacid cata-
lyst (Cs, sHo sPW,04) from Xanthoceras sorbifolia oil.

The method resulted in a high yield (>96%) in only 10 min
of reaction time with 1.0 wt% of oil, 12:1 methanol to oil
molar ratio, at 60°C of optimized reaction conditions. The
presence of four exchangeable protons and the distribution
of alkali cation in the Keggin network prompted Pesaresi

et al.>* to try low amount of Cs loading on heteropoly

acid (H,SiW,04) and found that Cs loading >0.8 per
Keggin resulted in heterogeneous activity of the catalyst.

A high yield of 99% was obtained using heteropoly acid
(Cs,.5Hy sPW,04) tried by Li et al.” for transesterifica-
tion of Eruca Sativa oil possessing FFA of 3.5%. Although a
longer reaction time was taken for completion of the reac-
tion, the other variables were moderate such as methanol to
oil molar ratio of 6:1, 85 x 107>:1 (catalyst to oil) weight ratio,
at 65°C.

Ta,O5 has been incorporated on Keggin-type heteropoly
acid by sol-gel co-condensation method by Xu et al.*® as a
hybrid catalyst for preparation of biodiesel. The incorporation
of Ta,O;5 on the heteropoly acid resulted in enhanced activ-
ity of the catalyst. The hydrophobic nature of the catalyst has
been enhanced by hydrophobic alkyl group such as methyl or
phenyl. The Keggin structure was found to disperse homo-
geneously throughout the hybrid catalyst. The catalyst was
reused for subsequent runs and wasn’t leached in the reaction

medium and was easily desorbed from the glycerol.
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Pure hydropoly (H;PW) follows the homogeneous catalytic
pathway because of its solubility in ethanol. To make the
catalyst heterogeneous, the heteropoly acid was supported

1.42 for conversion of

with zirconia (ZrO,) by Oliveira et a
oleic acid to methyl esters taking ethanol as solvent. The het-
eropoly acid was found to be well dispersed over the support,
and only the monoclinic phase of ZrO, was detected. 20 wt%
of H;PW loaded on ZrO, provided 88% conversion of oleic
acid with 10 wt% of catalyst in with 6:1 A:O molar ratio in

4 h. Some amount of the catalyst (8 wt%) was leached in the
solution. The catalyst when reused after washing with n-hex-
ane, drying, and calcination at 300°C for 4 h resulted in 70%
conversion. Silver has been doped over heteropoly acid to
form Ag,H; ,PW,,0,, with Ag content varying from 0.5

to 3 by Zieba et al.** The FTIR analysis indicated no change
in structure of Keggin anions of the heteropoly acid when
the protons were replaced by the silver cations. With silver
content x > 1, only one phase of silver salt with good crystal-
linity was observed. With silver content x = 0.5, a two-phase
mixture of silver salt and crystalline hydropoly acid was
observed. The catalyst loading up to x = 1 showed leaching
of the catalyst silver loaded heteropolyacid leading to the
homogeneous pathway reaction. Loading x > 1 resulted in
lowering of homogeneous nature and occurrence of het-
erogeneous pathway. The homogeneous catalytic activity
resulted in gel-type material which had to be immobilized
on a support to make the catalyst. Heteropoly acid has been
used for simultaneous esterification and transesterification
reaction by Baig et al.”’ for synthesis of biodiesel. Although
a high temperature of 200°C and a high molar ratio was
adopted, the biodiesel obtained fulfilled the specifications of
ASTM. The reaction condition of heteropolyacids as hetero-

geneous catalysts is given in Table 3.

Pyrone complexes with metals

A group of pyrone complexes were used as catalyst by
Abreu et al.”®, Sn(3-hydroxy-2-methyl-4-pyrone),(H,0),,
Pb(3-hydroxy-2-methyl-4-pyrone),(H,0),, Zn(3-hydroxy-
2-methyl-4-pyrone),(H,0), were develop a homogeneous
catalyst for transesterification using various oils. Among
the three pyrone complexes, tin complex showed a com-
paratively high yield of 35.6 and 37.1% with babassu and

soybean oil respectively. The maximum yield with lead and
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zinc complex obtained were 17.0 and 26.2% respectively
with babassu oil. Though the yield obtained with pyrone
complexed with metals were low, this paved a way for their
modification for a high yield and conversion of biodiesel.
Sn(3-hydroxy-2-methyl-4-pyrone),(H,0), was hence tried
to be used as heterogeneous catalyst by immobilization.
However, leaching of the catalyst in the ionic phase could

not be prevented and the catalyst could not be reused.”

Metal oxides

Tin oxide as a solid acid catalyst has shown a heterogeneous
pathway with yield of 92.6% in 3 h and was recycled for reuse
up to three runs without loss in catalytic activity.”> Guo et al.®’
incorporated aluminum on SO,*7/Sn0,, a solid super acid, and
was found to possess catalytic activity and acidity better than
zirconia- and titanium-based super acids. The incorporation of
aluminum on $O,*7/Sn0,-Al,0; via co-condensation method
at Sn/Al ratio of 9:1 and calcined at 500°C, gave the highest
activity. FT-IR results showed that active sites were due to Sn,
which was chelated with sulfuric acid. Thermogravimetric
analysis showed that, by introducing aluminum, the number
and intensity of the sulfuric groups attached on the surface
increased, strengthening the catalyst’s activity. Lam et al.®!
observed a yield of 92.3% with SO,>7/Sn0O,-SiO, with a weight
ratio of 3:1 at 150°C, 3 wt% of catalyst, and 15:1 methanol to
oil molar ratio in 3 h. The calcination temperature was found
to affect catalytic activity immensely. At low calcination tem-
perature (i.e. 200°C), the catalyst was not crystallized and
remained in gel form, whereas, at high calcination temperature
(i.e. 500°C), the catalyst collapsed due to loss of sulfate group.
The optimum calcination temperature was found to be 300°C.
The sulfate content in biodiesel was determined and found to
be less than 0.1 mg/kg which isn’t significantly different from
the norm of 10 mg/kg.

Acidic and basic solids such as ZrO,, ZnO, SO,*/Sn0,,
S0,%7/Zr0,, KNO,/KL zeolite, and KNO5/ZrO, were used
for the transesterification of palm oil and coconut oil. While
carrying out the experiments without catalyst at higher
reaction temperature (200°C) for 4 h reaction time, the
purity and yield of esters were very low (i.e. 0.3 wt%). The
transesterification of palm oil by SO,*7/Sn0O, and SO,*"/
ZrO, showed maximum yield of 90.3 wt%, with methyl
ester content of 95.4 and 95.8%, respectively. ZnO catalyst

Review: Solid acid catalysts for biodiesel synthesis

showed the maximum conversion of 98.9 wt% with a yield
of 86.1%. However, when the same set of catalysts were used
in the transesterification of coconut oil, the conversion and
yield of the methyl esters were reduced significantly. The
yields obtained with SO,*/Sn0O, and SO,*/ZrO, as catalysts
were 80.6 and 86.3%, respectively. Conversion obtained with
these catalysts was reduced to 88.3 and 93.0%, respectively.
Conversion with ZnO was only 83.2% with 77.5% yield.
Based on better performance of the catalyst SO, /ZrO,, it
was reused after regeneration for transesterification of palm
oil and the same activity of the catalyst was achieved.®
Table 4 depicts the optimum conditions for sulfated tin
oxide as heterogeneous catalysts.

Kiss et al.®®

have reported use of oxides of Zr, Ti, Sn, and Nb
as catalysts for synthesis of biodiesel adopting reactive distil-
lation in which reaction and separation steps were merged

in a single step. A short reaction time was needed for high
productivity of biodiesel with all the catalysts. With applica-
tion of reactive distillation, the cost of biodiesel production
was also lowered. However, a catalyst with high activity has
been recommended for the purpose of reactive distillation.
Thus, a hydrophobic surface of catalyst is preferred to avoid
being covered by water. Reaction pockets will be created in the
hydrophobic environment and will allow the fatty acid mol-
ecules to get absorbed and react to form biodiesel. The energy
requirement of the process was found to be near to 150 kcal/kg
of fatty ester. The reaction time was only 10 min for the reac-
tants to be placed in the column. The production of fatty acid

ester reached 21.4 kg ester.kg of catalyst™.h".

Zeolite

Zeolites are microporous crystalline solids with well-defined
structures containing silicon, aluminum, and oxygen in
their framework and cations. La/zeolite beta catalyst has
been developed and used as an alternate to homogeneous
catalysts. La/zeolite beta catalyst possessed higher quantity
of external Bronsted acid sites obtained by lanthanum ion
exchange on zeolite beta. A comparatively lower conver-
sion (48.9 wt%) of methyl esters was obtained at 60°C in

4 h reaction time with 14.5:1 alcohol to oil molar ratio. The
catalyst was easily separable from the product and free from
corrosion-causing agents.** Benson et al.®® used a variety of

zeolites as catalysts for catalytic cracking of mono-, di-, and
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triolein. A high product yield comprising of C,-C; paraffins
and olefins, aromatics, CO, and CO, were formed.

Zeolite (H-ZSM5) catalyst has been applied by Danuthai
et al.® to convert methyl esters (methyl octanoate) to
hydrocarbons. The deoxygenation of methyl octanoate
resulted in formation of high molecular weight ketone and
octanoic acid, which on cracking results in formation of
hydrocarbons (C1-C7) and aromatic compounds. Addition
of water was found to have a favorable effect on conversion
of methyl octanoate to hydrocarbons. The conversion took
place through condensation and hydrolysis process. H" ion
exchanged ZSM-5 (HMFI) Zeolite and Mordenite (HMOR)
Zeolite catalyst used by Chung and Park®’ resulted in 80%
conversion of oleic acid to biodiesel when the acid amount
was above 0.06 mmol/g. The desorption peaks were observed
at 350-550°C which were characteristic of strong acid sites.
A linear relationship was observed between the acidity and
conversion of the feedstock and a high catalytic activity was
observed with increased acidity. The two zeolites (H-ZSM-5
and H-Beta) synthesized by Giannakopouloua et al.®® in a
batch reactor showed varying catalytic activity depending on
vapor grading. H-ZSM-5 was found to have better catalytic
activity than the H-Beta catalyst when vapor upgrading was
not done as less residue and more gas products were formed.
When vapor upgrading was followed, H-ZSM-5 showed
better catalytic activity. H-ZSM-5 Zeolites are known to
possess high acidity due to the presence of a large number
of Brensted and Lewis acid sites and was found to be more
stable than H-Beta catalyst. Zeolite H-ZSM-5 shows high
catalytic activity owing to both Brensted and Lewis acid
sites. It also shows high selectivity due to a network of inter-
nal canals and well-defined diameters.®® H-B Zeolite and
Amberlyst have also been used for etherification of glycerol
showing 85-97% selectivity to mono-and di-octyl ethers.”
Kiss et al.”>, however reported zeolites to possess small pores
and have diffusion limitations for the large fatty acid mol-
ecules thus restricting its catalytic activity. Optimum reac-
tion conditions with zeolites used as heterogeneous catalyst

is discussed in Table 5.
Acidic ionic liquid
To overcome the low activity and deactivation of solid

acid catalysts, Zhang et al.”" tried a Bronsted acidic ionic
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Characterization Calcination Reaction conditions

Feedstock Method of

Catalyst

preparation

Catalyst
amount

Reaction

Temperature Molar ratio

(°C), time (n) (alcohol to oil) time (h);

temperature (wt%)

(°C)

61

Y=923

15:1 3, 150 3.0 wt%

300, 2

Waste cook-

ing oil

$0,2/

S0,27/Sn0, was prepared BET Surface area

13.9 m?/g, average

H,SO, solution and stirred. pore width, 13.7 nm,

by amorphous SnO, to

sn02'3i02
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cm®/g

calcined after filtration.
S0,27/Sn0,-Si0, was

First step: Hydroxylation of ZrO,/SO42 Surface
zirconium, titanium, and tin area:118 m?/g, pore

prepared by adding amor-
phous SnO, and SiO, to
H,SO, solution and stirred

63

72%

C=

3.0

10 min, 130-
150; (Pressure
6-10 Bar)

5:1

650°C, 4

volume:0.098 cm®/g;
Sulfur content: 2.3%

complexes Second step:
Sulfonation with H,SO,

followed by calcination
in air

Dodecanoic

acid

Niobic acid,
Sulfated
Zirconia,

Sulfated
Titania,

Sulfated Tin
oxide
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§ liquid, N-methyl-2-pyrrolidonium methyl sulfonate ((NMP]
S 3 . [CH;S03)), as catalyst for synthesis of biodiesel with high
..g FFA content. The catalyst showed high activity with 95.3%
o yield at 70°C and 8 h reaction. High conversion was achieved
c =
o z co © with oleic, stearic, myristic, and palmitic acid as well as a
» o ; © £ . . .
g2 R N % mixture of the acids with lower group alcohols (methanol,
1}
é % e © ) ethanol, propanol, and butanol). The liquid catalyst was
- : later reused eight times after removing its water content and
) o
= § S 8 E >90% conversion was obtained. Han et al.”? found esterifica-
+— o o
S % s nE tion of FFA to occur quicker than transesterification reac-
2 o tion using Brénsted acidic ionic liquid with alkaline sulfonic
o
= GEJ £ o o acid group. After crystallization, the ionic liquid loses H,O
© = E 8 ©
§ < ol E - and forms sulfonate, which gave a yield of 93.5% using waste
s 5 5 g oil as feedstock. Table 6 depicts the optimum reaction condi-
= @ -~
EIE &) tions for acidic ionic liquid.
m S~— N
20
o =
5 § Other catalysts
g "é = %D Sulfonated multi-walled carbon nanotubes and carbonized
© z
=982 vegetable oil asphalt have been used by Shu et al.”? for syn-
g = © SE thesis of biodiesel from cottonseed oil. The average pore size
o o
g GE) g i 2 of sulfonated vegetable oil asphalt was found to be 43.90 nm,
CE)_ S B3 g g which is sufficient for diffusion of reactants onto the inte-
O . . 1: . . .
R - = rior of the catalyst, providing more active sites with better

activity. 89.9% conversion was achieved with asphalt-based

catalyst. Amberlyst-15 and Amberlyst-BD20 were observed

=3 pum;
36; BET
377

Surface area

Organic template was then decom- m?/g; Acidity

382 pmol/

to be good solid catalysts for biodiesel conversion with high

FFA oleic acid by Park et al.” Conversion of oleic acid with

Characterization Calcination

Particle size
Particle size

Si/Al ratio

Amberlyst-15 decreased with high water content, whereas
Amberlyst-BD20 was unaffected by water. This has been

cat

attributed to poisoning of the active acid sites by water mol-
ecules in Amberlyst-15. Contrary to Amberlyst-15, which
possessed several pores, absence of pores in Amberlyst-BD20
provided no opportunity for water to adsorb on its sur-

face and thus prohibited the entry of water molecules. Kiss
et al.”® also observed that the hydrophobicity of the catalyst

surface and the density of the acid sites play an important

posed by calcination in air at 600°C density

for 5 h. Na* ions in the zeolite was
exchanged by NH,* ions from 1 M
hydroxide, and deionized water and
kept for 72 h and then heated at
190°C for 48 h

Mordenite zeolite purchased and
treated with acetic acid solution

NH4NOj; solution. Zeolite was then
for5h

used as an organic template for

synthesis of H-ZSM5 Zeolite.

separated by filtration and washing

ZSM-5 zeolite prepared by hydro-

thermal treatment of colloidal silica, 0.2-2.0 ym

Tetrapropylammoniumbromide
aluminum hydroxide, potassium

role in the catalyst’s activity and selectivity.
The hydrophobic nature of Amberlyst-15 has been studied
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c
& £ %§ = acidic and hydrophilic acid sites would adsorb water on its
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= o surface and will lose its activity. The water adsorbed on the
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2 2, 2= E o surface will prevent the access of triacylglycerol to the cata-
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® ﬁ. 8 235 =3 5SS lyst surface and hence a reduced activity will be observed.
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Zieba et al. ”® reported that moderate strength of acid sites

)
and their hydrophobic microenvironment will lead to a §
stable and active solid acid catalyst for esterification of tria- ;T)j B ~
cylglycerols. It is confirmed? that Amberlyst possessed low e
thermal stability which makes it unsuitable for reaction at _5 . "
high temperature. 4 % . @

There are vegetable oils that possess high levels of FFA % i S ('; o
which can be most effectively converted to fatty acid alkyl SIS
esters by esterification reaction. Similarly, waste cooking g *g . °
oils with high FFA can be subjected to solid acid catalysis for % g X 2 §
biodiesel synthesis. Alkyl esters were prepared from cerium sl
trisdodecylsulfate (Ce[OSO;C,,H,;5]3.3H,0) as catalyst by _aé IE
solvent-free method for esterification and transesterifica- = 2 o (<)
tion reaction. The catalyst was found to be successfully used g % E) 8 o P
for 3 runs without loss in its activity.”® A hybrid catalytic -E; § :—Ci g
membrane has been prepared by Shi et al.”” from sulfonated o oo
poly (vinyl alcohol) loaded with a solid acid catalyst Zr(SO,), 5 © % _ -
(ratio of 1:1) and 94.5% conversion was obtained. A zinc g ks '§ & =
amino acid complex has been immobilized on a monolith & § il
support to make it act as heterogeneous catalyst. Although a c 2=
low conversion of 54% was obtained, the catalyst was found -(..93. *g GE) % §
to be active until 24 h of use.”® E) aé_ = E g

Recently, alum (KAI(SO,),.12H,0) derived from Kaolin 8 @ 8
has been tried for a potential heterogeneous catalyst by - 2,
Aderemi and Hameed.”” However, the conversion obtained -(..93. ;,g “:‘ng § g: 5 % E 3
(i.e. 92.5%) is lower than the reccommended value of methyl : -GE‘) | é j% & g e é 3 § g § "E
ester by European Norms (96.5%). A byproduct of pyrolysis, % "g _<=§ g § g % _<=§ % % § % §
biochar has been use for synthesis of biodiesel by Dehkhoda %‘ E ‘gg g & g ‘§'§ § % z %
et al.®® Although conversion of 92% was obtained, the yield E © CZrELCEBRESE
obtained was very low (10%). Zinc acetate has been used in 8 - 5 g - § - E’ g’
the catalysis of oleic acid in subcritical conditions. A high § L £ 4 § E g '-% 8 ii’ § 5 % g é’é §
conversion of 95.0% was obtained at 220°C and 6.0 MPa = % 3 _§ 23 § g ;“gc',) § § é § %’ € .f, g c
at 4:1 methanol to oleic acid ratio and 1.0 wt% catalyst g g -g § .§ g g g E % g 3 ;% 6§ %E’% %
amount.®! The carbohydrate-derived catalysts (D-glocose, E 5 § E% é‘ § g < g § % g (;C,)' ;‘)\‘ g $ '% % g
sucrose, cellulose and starch) gave a high yield (80%) and b § g ;% é § % %g § i é .g % :2 é E ;&E ; §
showed 93% catalytic activity even after 50 successive runs % g g g E § g _;?: §O3 gé ;g % é (E) &OJ g @ E
of reuse. The findings on sulfated zirconia aren’t as encour- ¢_-_> . Mz=26ME0 A S0NEE2I=30
aging as the catalyst is observed to leach in the reactant 'g § o _
medium, although high yield and conversion have been § § 'g é
observed in some of the cases. On the contrary, the carbo- g h o s
hydrate-derived catalysts exhibited high stability which has : - = 5o 2
been attributed to presence of polycyclic aromatic carbon ] = = 8” = é g o -%'
sheets which are hydrophobic and do not allow a water layer E S ié é’ § g '-(3 S
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to form on its surface.” The optimum reaction conditions of
the catalyst are discussed in Table 7.

In spite of development of biodiesel from various catalyst
including solid acid and solid base catalysts, various parame-
ters (viscosity, cloud point, flash point, cetane number, oxida-
tion stability, etc.) have to be analyzed of make the biodiesel
fuel fulfill the American Society for Testing and Materials
(ASTM) D6751 specifications. A major disadvantage of
biodiesel as fuel is its poor oxidation stability which makes
the fuel off-specification during its storage. The reason is the
presence of total number of bis-allylic sites i.e. methylene
group allylic to the two double bonds.* As far as the feed-
stock is concerned, the majority of them taken for esterifica-
tion/transesterification reaction are edible such as soybean,
rapeseed, and sunflower oils. Though some of the researchers
have tried waste cooking/frying oil, they comes from one
source and still there is little awareness for their usage as
biodiesel feedstock with no current plan by any industry to
setup a plant based on this feedstock. Hence, it becomes per-
tinent for the usage of non-edible oils (e.g. Pongamia pinnata,
Jatropha curcas etc. that are available in many parts of the
world) and algae as feedstock for synthesis of biodiesel.

Crude oil is an exhaustible resource and its price is regu-
lated by its scarcity issues.®” Hence, even though the present
mode of synthesis of a renewable fuel like biodiesel is costly,
the advantages of biodiesel other than its renewability are
many. The other advantages include its biodegradability;
reduced emission of pollutants such as hydrocarbons, par-
ticulate matter, carbon-monoxide, and other toxic emissions;
and being a good lubricant. Hence, even though a low-priced
product i.e. biodiesel is developed through the application
of various solid acid catalysts, the fuel synthesized is of a
high significance in the development of the economy of any

nation in addition to a clean, and sustainable environment.

Conclusion

Biodiesel is a renewable fuel and has been synthesized by vari-
ous feedstocks and catalysts. The catalysts mainly belong to
two categories: homogeneous and heterogeneous. While the
former has been successfully tried for development of biodie-
sel, there are certain constraints and limitations in their appli-
cation at production level. These constraints are the thorough

washing of biodiesel by water and subsequent generation of

Review: Solid acid catalysts for biodiesel synthesis

excessive wastewater. Also, these catalysts cannot be reused.
Hence, recent research on catalysts has focused on those

that need minimal purification steps and those that are reus-
able, which enhances their easy application and reduces the
overall cost of biodiesel production. Heterogeneous catalysts
have these potentials where they can be reused and easily
separated. They also ensure that no or minimal purification
steps are involved in the process. Heterogeneous catalysts are
further categorized in solid base and solid acid catalyst. Solid
base catalysts have been used extensively for feedstock with
low acid value and have resulted in high yield and conver-
sion. Solid acid catalysts have the advantage of being used
for high acid value feedstock and can lead to esterification
and transesterification simultaneously. This becomes very
important as the non-edible oils and waste cooking/frying
oils commonly employed for synthesis of biodiesel have high
acid value. Hence, instead of a two-step process where the acid
value is reduced by the first step followed by conversion of oil
to biodiesel in the second step, it is replaced by a single-step
process when solid acid catalysts are adopted.

The present review deals with application of various types
of solid acid catalysts for synthesis of biodiesel. The process
adopted for their preparation, their textural properties, ther-
mal treatment, reuse, and leaching aspect are discussed. The
solid acid catalyst should be active, selective, and stable under
the reaction conditions. Among the solid acid catalysts, res-
ins have shown good catalytic activity. The low cross-linking
density that corresponds to high swelling capacity, high
average pore diameter, and high BET surface area are favo-
rable for a better catalytic activity. Tungstated and sulfated
zirconia belong to the super acid category and their potential
as solid acid catalyst with a high yield and conversion of oil
to biodiesel has also shown. Calcination temperature rang-
ing from 500 to 850°C influences the activity of majority of
the catalysts. Tungstated zirconia modified in pellet form
was effective for continuous biodiesel production. However,
SO,% was leached in the reaction medium and this decreased
the catalytic activity in subsequent runs. HPAs such as
12-tungstophosphoric acid (H;PW,,04), which are strong
Bronsted acids, have shown high catalytic activity. High yield
and conversion have been achieved with HPA in combination
monovalent cations such as Cs*. HPA loaded with niobia,

tungstated zirconia, tantalum pentoxide, silver have shown

© 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69-92 (2011); DOI: 10.1002/bbb
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more resistance to leaching of the catalyst. Tin oxide loaded
to ionic liquid, and sulfated tin oxide has also shown high
catalytic activity. Zeolite owes Bronsted as well as Lewis acid
sites and show enhanced catalytic activity in presence of
water. Other potential catalyst are sulfonated and carbonized
vegetable oil asphalt, cerium trisdodecylsulfate, sulfonated
poly (vinyl alcohol) loaded on Zr(SO,),, and alum.

Although these catalysts vary in their method of prepara-
tion, their catalytic activity is high with some leaching which
limits the number of reuse runs. However, all of the catalysts

were efficient for waste oils as feedstock with high FFA value.
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