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a b s t r a c t

Heterogeneous catalysts are now being tried extensively for biodiesel synthesis. These catalysts are
poised to play an important role and are perspective catalysts in future for biodiesel production at indus-
trial level. The review deals with a comprehensive list of these heterogeneous catalysts which has been
reported recently. The mechanisms of these catalysts in the transesterification reaction have been dis-
cussed. The conditions for the reaction and optimized parameters along with preparation of the catalyst,
and their leaching aspects are discussed. The heterogeneous basic catalyst discussed in the review
includes oxides of magnesium and calcium; hydrotalcite/layered double hydroxide; alumina; and zeo-
lites. Yield and conversion of biodiesel obtained from the triglycerides with various heterogeneous cata-
lysts have been studied.

� 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

An impetus in development of renewable sources of energy has
resulted in biodiesel development from raw materials such as
vegetable and waste cooking oils. Biodiesel is synthesized by reac-
tion of triglycerides with alcohol in the transesterification reaction.

The commonly used alcohol is methanol due to low cost and the
biodiesel is thus fatty acid methyl ester (FAME). New generation
biodiesel intends to derive raw material from algae and other feed-
stock which will provide sustainability to the energy sources
needed to adequately supplement the biodiesel industry. The
process that is being adopted worldwide for biodiesel synthesis
is transesterification. In the transesterification reaction, the ester
group from the triglyceride is detached to form three alkyl ester
molecules. The feedstock for biodiesel preparation at industrial
level comprises of edible as well as non-edible vegetable oils.

0016-2361/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
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Irrespective of the feedstock used for biodiesel production, a cata-
lyst is needed to complete the reactions in a considerable time. The
only case where catalyst is not needed for biodiesel synthesis is
when alcohol and oil are used in supercritical conditions. Though
there are recent reports on the use of catalyst even in supercritical
conditions.

Catalysts mainly belong to the categories of homogeneous or
heterogeneous. Homogeneous catalysts act in the same phase as
the reaction mixture, whereas heterogeneous catalysts act in a dif-
ferent phase from the reaction mixture. Being in a different phase,
heterogeneous catalysts have the advantage of easy separation and
reuse. At present, the biodiesel industry is dominated by applica-
tion of homogeneous catalysts due to their simple usage and less
time required for conversion of oils to their respective esters. The
widely used alkaline catalysts NaOH and KOH are easily soluble
in methanol, forming sodium and potassium methoxide and aug-
menting the reaction to completion. When the acid value (AV) of
the oil is high, acid catalyst is used to lower the AV and then alkali
catalyst is utilized for biodiesel synthesis. Enzymes are the other
important catalysts possessing high selectivity and belonging to
the homogeneous group of catalysts. However, the constraint that
lies with their application for production of biodiesel is their com-
paratively high cost. Cheaper homogeneous acid and alkali cata-
lysts provide high yield and conversion of biodiesel. However,
they need thorough washing by water and neutralization by
respective acid or alkali, resulting in the need for extra water and
generation of excess wastewater. The biodiesel must then be dried
to remove the resultant moisture content. These limitations can be
avoided by using a heterogeneous (also called ‘‘solid”) catalyst.
Many of these catalysts have been reported in recent excellent re-
view papers to produce good yield and conversion of feedstock to
biodiesel [1–3]. The major drawback of heterogeneous catalysts in
general lies their preparation and reaction conditions which is en-
ergy intensive which will escalate their production cost and their
leaching aspect. For a catalyst to be truly heterogeneous in nature,
it should not leach into the reaction medium and should be reused.
In addition, the catalyst should have high selectivity for the desired
product formation and should give high yield and conversion to
biodiesel. The combustion characteristics of the fuel are indepen-
dent of the catalyst used for transesterification. However, the char-
acteristics of the fuel depend on the feedstock used in synthesis of
biodiesel. An overview of which has been discussed in this review.
The solid catalysts can be categorized as solid base and solid acid
catalyst. Di Serio et al. [2] have discussed the mechanism of various
heterogeneous catalysts. Heterogeneous catalysts (acid and base)
have been classified as Brønsted or Lewis catalysts. A catalyst
may possess one or both of the sites and the relative importance
of these two sites is not known so far. The mechanism of reaction
for heterogeneous catalysts is similar to that of homogeneous
catalysts. In homogeneous catalysts such as sodium hydroxide,
potassium hydroxide and sodium methoxide, an alkoxide group
is formed on reaction with alcohol, which then attacks the carbonyl
carbon atom of the triglyceride molecule. Heterogeneous basic
Brønsted and basic Lewis catalysts react similarly with alcohol,
forming a homogeneous alkoxide group. The transesterification
reaction then occurs between alcohol (usually methanol or
ethanol) adsorbed on catalyst and ester of the reactant by the
Eley–Rideal mechanism. For acid catalysis, the mechanism is sim-
ilar for homogeneous and heterogeneous Brønsted and Lewis acid
catalysts. Brønsted acid is suitable for esterification reaction,
whereas Lewis acid gets deactivated due to the water formed in
the esterification and hence is preferred for the transesterification
reaction. In homogeneous and heterogeneous Brønsted and Lewis
acid catalysts, the reaction mechanism proceeds by protonation
of carbonyl group, thus increasing its electrophilicity. This makes
the carbonyl group more susceptible to nucleophilic attack. The

rate-determining step is different for Brønsted and Lewis solid acid
catalyst. For Nafion, a Brønsted solid acid supported on silica,
nucleophilic attack between adsorbed carboxylic acid and
unadsorbed alcohol (by Eley–Rideal mechanism) is the rate-
determining step. In the case of Lewis acid catalyst, acid strength
is the rate-determining step for successful transesterification
reaction.

This review paper deals with the solid alkali catalysts used for
biodiesel development, the energy input required in the transeste-
rification reaction.

2. Oxides as catalyst

Oxides of magnesium and calcium (MgO and CaO) have been
tried as solid base catalyst owing to their easy availability, low
cost, and non-corrosive nature.

2.1. Oxides of magnesium and calcium

Initial research did not show promising results, but later on cal-
cium and magnesium oxides were successfully developed to attain
high yield and conversion of biodiesel. When both homogeneous
and heterogeneous catalysts were tried for biodiesel development
by transesterification of sunflower oil, NaOH (a homogeneous cat-
alyst) performed much better than MgO (a heterogeneous catalyst)
in terms of conversion. 100% conversion is reported to have been
achieved in 8 h reaction time and 60 �C temperature with NaOH,
but only 11% with MgO. Tin chloride, a Lewis acid, gave much low-
er conversion of 3%. Conversion of vegetable oil to methyl esters
obtained with other catalysts such as anion and cation exchange
resins, sulphate-doped and silica-doped zirconium hydroxide,
titanium silicate, titanium chelate, zeolite, and immobilized lipase
were all either 0 or <1% [4]. Lopez [5] also reported only 18% con-
version of the feedstock, triacetin after 8 h of reaction time with
MgO as catalyst after calcination at 600 �C. The reason attributed
is the low surface area of the catalyst. More recently MgO has
shown to possess catalytic activity for synthesis of biodiesel. A
pioneering wok on catalytic activity of MgO has been reported by
Di Serio et al. [6] where 92% yield has been achieved using 12:1
methanol to oil molar ratio, 5.0 wt.% of the catalyst in 1 h. Dossin
et al. [7] reported that MgO was found to work efficiently in batch
reactor at ambient temperature during the transesterification
reaction with production of 500 tonne of biodiesel. As heating is
not required during batch process, the overall cost of production
of biodiesel is reduced. The kinetic model study has indicated the
reaction with MgO to be faster than the conventional base cata-
lyzed transesterification without formation of a byproduct [8].
MgO has shown increase in reaction rate when used in supercriti-
cal conditions. Though the reaction get complete in 10 min, a high
temperature (300 �C), and a high methanol to oil molar ratio of
39.6:1 was needed to achieve 91% of FAME yield [9].

MgO, when loaded on three different mesoporous silicas
(MCM-41, SBA-15, and KIT-6), was found to be quite effective
resulting in high conversion. The catalyst was coated by two
different methods: in situ coating and impregnation methods.
X-ray photoelectron spectroscopy (XPS) showed low attachment
of MgO over the surface of SBA-15 catalyst by in situ coating
method compared to impregnation method. This resulted in higher
surface area and pore volume of the catalyst obtained by in situ
route rather than with impregnation method. As more available
Mg enhances the transesterification reaction, SBA-15 resulted in
better activity with preparation via impregnation method. Since
the mechanism of heterogeneous catalysis is adsorption, surface
Mg concentration was found to be more dominant over other
physical properties such as surface area, pore volume and pore

1310 Y.C. Sharma et al. / Fuel 90 (2011) 1309–1324
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size. Though a high conversion of 96% was obtained, the reaction
conditions (220 � for 5 h in batch reactor with continuous stirring
with MgO loaded on SBA-15) were energy intensive which may in-
cur high cost for biodiesel production [10]. KOH loaded on MgO by
wet impregnation method has shown high conversion (99.36%)
and yield (95.05%) of biodiesel from canola oil. Upon addition of
20 wt.% KOH loaded on MgO, the total basicity increased to
6.0 mmol/g and was observed to be optimum for best performance
of the catalyst activity (Fig. 1). K interacts with Mg and weakens
the Mg–O bond. This facilitates migration of O2� species that react
with the CO2 present in air during calcination. This leads to the for-
mation of K2CO3 dispersed over magnesia from KOH loading as
determined by Scanning Electron Microscope (SEM) and X-ray
Diffraction (XRD) analysis. K2CO3 acts as a heterogeneous catalyst.
Though the optimum reaction conditions were moderate for molar
ratio {i.e. 6:1 (alcohol to oil)} and catalyst amount (3%), a longer
reaction time was required (7 h) which will incur high cost of the
overall process [11]. Loading K2CO3 on MgO (K2CO3/MgO loading
ratio 0.7) has shown a high yield of 99.5%. A high base strength
of PKa value between 15 and 18.4 (higher than that of K2CO3)
has been attributed to the decomposition of K2CO3 to K2O by calci-
nations. Al2O3 and CaO, when tried as carriers instead of MgO, have
also shown a high yield of 98%. However, K2CO3/CaO was found to
be sensitive to water and was converted to hydroxide. K2CO3/MgO
was resistant to water content; 1% water only reduced the catalytic
activity to 95%. The finding is significant in view of the lesser
amount of catalyst (1 wt.%) and reaction time (2 h) along with
molar ratio {(6:1) alcohol to oil} utilized for transesterification.
The catalyst was reused after calcination (at 400 �C for 4 h) for 6
runs and found to be significantly effective (98% yield). The resid-
ual potassium content of the product was determined to be less
than 1 ppm, showing only minor leaching of the catalyst [12].

Reduction in reaction time for transesterification has been
brought by using 3.0 wt.% of nano-MgO (60 nm) as catalyst in just
10 min in supercritical or sub critical conditions. However, the pro-
cess required a high amount of methanol (36:1 M ratio), high tem-
perature (260oC), and pressure (24.0 MPa). The activation energy
needed with nano-MgO as catalyst was found to be 75.9 kJ/mol,
which is lower than that without MgO (92.5 kJ/mol), which results
in shorter reaction time. Yield of methyl esters was low in a non-
catalytic system; however, the difference narrowed with reaction
time (Fig. 2). It can be seen at even a low amount of catalyst, nano
MgO (i.e. 0.5%) was able to effectively catalyze the reaction. Exper-
iments with usual MgO were not attempted, which could have pro-
vided a comparison to justify the suitability of nano-size synthesis
of MgO as catalyst [13]. Fabrication of the catalyst into macro-

spherical form instead of the usual powder form resulted in its im-
proved performance. The catalyst has been prepared from c-Al2O3

spheres, used as template and Mg(NO3)2�6H2O by urea hydrolysis
method. c-Al2O3 was later removed by treatment with 0.2 M
NaOH. Magnesium–aluminum layered double hydroxides were
formed, which upon heating and calcination gave the magnesia-
rich magnesium aluminate spinal framework, i.e. MgO�MgAl2O4

to be composed of aggregates of rod-like nanoparticles. However,
the yield obtained with the catalyst MgO�MgAl2O4 and MgO/
MgAl2O4/c-Al2O3 were substantially low at 57% and 36% respec-
tively in 10 h. Higher catalytic activity of the catalyst MgO�MgAl2O4

has been attributed to the increase in its base strength, which re-
sulted from leaching of amphoteric Al3+ during the preparation of
the catalyst. The specific basicity of MgO�MgAl2O4 was found to
be 372 lmol/g and that of MgO/MgAl2O4/c-Al2O3 was 277 lmol/
g. The higher specific basicity along with higher surface area, pore
volume, pore size, and porous structure of MgO�MgAl2O4 resulted
in better diffusion of the reactants and product molecules with
the catalyst, thus proving it to be a better catalyst [14]. Hence, even
with low yield the study is significant in the sense that basicity of
the catalyst may be modified by selective leaching of template.
However, literature on nano-size catalysts is not readily available,
so research on such catalysts is important owing to their enormous
surface area.

Like magnesium oxide, calcium oxide (CaO) as a catalyst has
gained attention among researchers worldwide for the develop-
ment of biodiesel owing to its low cost and easy preparation. How-
ever, an important aspect in dealing with calcium oxide as catalyst
is its modification by calcination and to oversee its leaching in bio-
diesel. Also, presence of water and influence of free fatty acid (FFA)
have to be considered for its application. Huaping et al. [15] used
CaO as heterogeneous catalyst for biodiesel synthesis from Jatropha
curcas oil. The base strength of calcium oxide increased to 26.5
(grouped in the category of super base) on treatment with
ammonium carbonate solution and further calcination. Calcination
at 900 �C resulted in 93% conversion of jatropha oil to biodiesel
under optimized conditions (70 �C temperature, 2.5 h reaction
time, 1.5% catalyst amount, and 9:1 methanol to oil molar ratio).
At high calcination temperature, calcium carbonate was decom-
posed, producing defects in its crystal structure. The defects then
favored the formation of calcium methyloxide which is a surface

Fig. 1. Catalyst, MgO supported KOH [11]. Influence of KOH loading on the
conversion and FAME yield. [Reaction conditions: Methanol to oil molar ratio, 6:1;
catalyst amount, 3.0 wt.%; reaction time, 9 h; temperature, 333 K].

Fig. 2. Catalyst, nano-MgO [13]. Effect of nano-MgO content on methyl ester yield
from sunflower oil transesterification. [Reaction conditions: 250 �C; reaction
pressure 24.0 MPa; Methanol to oil molar ratio, 36:1; stirring 1000 rpm].

Y.C. Sharma et al. / Fuel 90 (2011) 1309–1324 1311



Author's personal copy

intermediate in the transesterification reaction. The catalyst was
further reused three times with 92% conversion of jatropha oil.
Even though biodiesel was synthesized, calcium ions were
reported to have leached in the biodiesel. Calcium ions, water, oxa-
lic acid, citric acid, and ethylene diamine tetra acetic acid (EDTA)
have been used as decalcifying agents. Water washing was not
found to be a suitable decalcifying agent, reducing the yield to
69.5%. Among the other decalcifying agents, citric acid gave the
best yield of 95.5%, followed by EDTA (92.3%) and oxalic acid
(90.7%). Owing to the leaching aspect of calcium ions, the suitabil-
ity of this catalyst as a heterogeneous one cannot be justified. A
study on stability and surface poisoning of calcium oxide when

used as catalyst by Granados et al. [16] revealed that the active
sites of CaO were poisoned by carbon dioxide (CO2) and atmo-
spheric water (H2O). On 10 days exposure to room air, activated
CaO was fully transformed to Ca(OH)2 with no trace of CaO. This
could be overcome by activation treatment of the catalyst for
removing the carbonate groups, which act as the main poisoning
species, and further preventing the catalyst from coming in air con-
tact. Evacuation of the catalyst at 500 �C resulted in improvement
of catalytic activity due to dehydration of Ca(OH)2. But, as the cat-
alyst is cooled to room temperature, the surface of CaO gets cov-
ered by OH groups. To overcome this, the catalyst is outgassed at
700 �C to revert the CO2 poisoning and the catalyst gets highly acti-
vated. It was observed that poisoning occurred more due to car-
bonation of CaO than hydroxylation. The catalyst has been
successfully reused up to 8 times, but dissolution of the catalyst
has been reported as it is soluble in methanol to about
0.035 wt.%. The leaching of catalyst was evident from the solution
of methanol and CaO (discarding the solid CaO) taken for transeste-
rification reaction. The solution gave yield of 60% indicating the
leaching of the catalyst which might discourage its application as
a heterogeneous catalyst (Fig. 3) [16]. Calcination temperature of
550 �C was found to be optimum for CaO as catalyst to get rid of
the poisoning species (mainly water and carbonate) because
Ca(OH)2 is dehydrated at 550 �C. Further increase in calcination
temperature to 600–700 �C substantially reduced the yield of
methyl esters. The catalyst calcined at 900 �C resulted in 0% yield
of biodiesel. This has been attributed to the rearrangement of solid
surface and bulk atoms at higher temperature. The chemical reac-
tion was found to follow pseudo-first order reaction kinetics. The
triglyceride mass transfer limitation observed initially was over-
come by advancement of reaction and increase in catalyst amount
[17]. The active phase present in calcium oxide has also been inves-
tigated by Kouzu et al. [18]. After completion of the transesterifica-
tion reaction using calcium oxide as catalyst, the catalyst was
collected and analyzed to examine the active phase of calcium
oxide. The catalyst was analyzed by various instrumental methods
such as XRD, IR spectroscopy, 13C NMR, and SEM, and the results
showed the catalyst consisted of calcium diglyceroxide. Calcium
diglyceroxide was formed by the transesterification reaction of
calcium oxide with the by product glycerol and was a major

Fig. 3. Catalyst, CaO [16]. Yield of FAME obtained by using (A) homogeneous
species created by contacting the methanol and the activated CaO for 2 h at 60 �C
and (B) by using the activated solid CaO.

Fig. 4. Catalyst, CaO and calcium diglyceroxide [17]. Possible mechanism for transesterification of vegetable oil with methanol catalyzed by calcium diglyceroxide.
(a) Adsorption of methanol onto catalyst; (b) abstraction of proton by basic sites; and (c) nucleophilic reaction with methoxide anion followed by stabilization of the anion by
proton.

1312 Y.C. Sharma et al. / Fuel 90 (2011) 1309–1324
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constituent of the collected catalyst. For comparison, calcium
diglyceroxide was also prepared by CaO at reflux of methanol with
50% glycerol for 2 h under atmospheric pressure, and the activity of
both the catalysts was found to be similar. Absence of calcium
methoxide was confirmed by 13C NMR. The activity of the collected
catalyst was reduced due to decrease in strength of the basic sites.
The active site of the used catalyst was thought to be due to OH
groups from calcium diglyceroxide. However, the feedstock was
low in acid value, which otherwise would have resulted in calcium
soap formation. The mechanism of the reaction is shown in Fig. 4a–
c. The two OH groups favored the adsorption of methanol-forming
hydrogen bonds (Fig. 4a). The OH groups also enhanced the
abstraction of protons (Fig. 4b). Calcium methoxide possessed
stronger basic sites as compared to calcium diglyceroxide but be-
came poisoned (Fig. 4c). Presence of water up to 1000 ppm pro-
moted the yield of biodiesel. Further increase in moisture up to
2500 ppm showed no further increase in biodiesel yield. The mois-
ture most likely enhanced the mobility of reactants from the sur-
face of the catalyst. Tolerance to moisture (up to 0.25 wt.%) is
always an advantage for catalysts used in transesterification reac-
tions where moisture may be entrapped in reactants via feedstock
or alcohol. The catalyst, calcium diglyceroxide, was also found to
be tolerant to air exposure. When exposed to air for 30 min, the
yield was not reduced. Contrary to this, yield of biodiesel decreased
substantially when the catalyst, calcium oxide, was exposed to air
for 30 min. Yield reduced from 93% to just 10% in 30 min. exposure.
Even a 3 min exposure was found to deactivate the catalyst [18].
Liu et al. [19] found that water content of 2.0% showed positive
influence on yield of biodiesel using CaO as catalyst. Water mole-
cules are assumed to have been adsorbed on the CaO surface to
form OH groups, which provided active basic sites for transesteri-
fication and enhanced the reaction rate. Ninety five percent yield
was achieved with a 12:1 alcohol to oil molar ratio with 2.0% water
dissolved in methanol at 65 �C. However, water content over
2.80 wt.% of the oil will hydrolyze the ester formed and will result
in saponification. The catalyst was reused for 20 runs with just a
slight decrease in biodiesel yield (Fig. 5).

Calcium oxide has also been tried in combination with other
compounds to enhance its catalytic activity. Wet impregnation
combined with thermal treatment method was used to adhere
aqueous solutions of calcium acetate on porous silica (such as

SBA-15), MCM-41, and fumed silica, and tried as catalyst for bio-
diesel development from castor and sunflower oils. CaO was incor-
porated on porous silica after drying and calcining at 60 �C and
600 �C, respectively. The siliceous support was found to have an
important influence on the activity of the catalyst. Among the cat-
alysts, SBA-15 possessed highest thermal stability at a higher calci-
nation temperature of 800 �C and did not suffer any structural
modifications. CaO (14 wt.%) supported on SBA-15 was found to
be most active for reaction and thermally resistant. High calcina-
tion temperature (800 �C) has been reported to transform the cal-
cite phase (CaCO3) and the calcium hydroxide into calcium oxide.
An important finding by incorporation of CaO on silica was preven-
tion of lixiviation of the active phase in methanol. CaO and carbon-
ate particles adhered to the surface of the catalyst. The catalyst was
found to work differently for different vegetable oils. Yield of 95%
was achieved with sunflower oil in 5 h reaction time at a high rate
of stirring (1250 rpm) which will consume ample amount of en-
ergy. With castor oil as feedstock, yield was comparatively less
(65.7%) in 1 h reaction time. This however remains unexplained
[20]. Various alkali compounds (LiNO3, NaNO3, and KNO3) were
doped on CaO and MgO to foresee their activity in the transesteri-
fication reaction. A correlation was observed between the base
strength and the activity of the catalyst. Calcination of the catalyst
resulted in decrease in the surface area of the catalyst from 10 to
1–2 m2/g. Higher surface area of the catalyst is not even desired
as triglycerides are large molecules and would not be able to dif-
fuse into the pores unless a mesoporous substrate is used [21].
Conversion obtained from uncalcined catalysts (LiNO3/CaO,
KNO3/CaO, and NaNO3/CaO) was found to be 85%, 90% and 98%,
respectively. When the catalysts were calcined, the conversion
reached 99–100%. However, when the alkalis were doped with
MgO, only 4–5% conversion was achieved. On calcination, only
LiNO3/MgO gave complete (100%) conversion. Even after calcina-
tion, KNO3/MgO and NaNO3/MgO gave conversion of 4% and 7%,
respectively. Leaching of the catalyst was observed when the resid-
ual alkali metals in reaction mixture were determined by flame
photometry and atomic absorption spectrometry (AAS), resulting
in a homogeneous state, which is a major constraint for their appli-
cation as a heterogeneous catalyst [21]. CaO doped with lithium ni-
trate (LiNO3) by wet impregnation method has shown increase in
its basicity. The base strength (pKBH+) of the impregnated catalyst
(i.e. Li/CaO) ranged from 15.0 < pKBH+ < 17.2, which is much higher
than that of CaO (in the range 8 < pKBH+ < 10). Loading of LiNO3 on
CaO resulted in micropore blockage of the catalyst due to crystal-
lization of the LiNO3 phase. This caused decrease in the surface area
from 20 to ca. 8 m2/g for 4 wt.% of Li/CaO catalyst. Loading of lithium
in optimum amount (1.23 wt.%) resulted in adsorption of LiNO3

in the form of Li+ and NO�3 ions on CaO. The formation of elec-
tron-deficient Li+ species as confirmed by X-ray photoelectron
spectroscopy (XPS) generates defect sites and forms surface hydro-
xyl (–OH) species in the presence of water. While CaO exhibited
2.5% conversion in 20 min, 100% conversion was achieved from
CaO with optimum lithium loading. The lithium leaching from
LiNO3-loaded CaO has been reported to be negligible, which is
necessary for the catalyst to be classified as heterogeneous [22].
A simple method of activation of CaO as a catalyst has been
performed at low temperature. With non-activated CaO, the yield
increased substantially after 6 h reaction time. This gave an indica-
tion that the CaO was activated by reaction with methanol. To
check this, the catalyst was prepared by mixing it with methanol
and activated by stirring it for 1 h at 25 �C. Subsequently, rapeseed
oil was added and heated at 60 �C for 10 h. Although the reaction
rate was found to be low initially (resulting in only 30% biodiesel
yield in 1 h reaction time with 0.50 g activated CaO), the yield of
the biodiesel was similar to that of well-established homogeneous
catalyst, i.e. KOH in 3 h of reaction time. The mechanism proposed

Fig. 5. Catalyst, CaO [19]. Effect of water content of methanol on biodiesel yield.
[Reaction conditions: CaO to oil mass ratio, 8%; methanol to oil molar ratio, 6:1;
reaction temperature, 65 �C].
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for the activated CaO is transformation of a small amount of CaO to
Ca(OCH3)2. Water is generated in the formation of Ca(OCH3)2

which reacts with the remaining major portion of CaO to form
Ca(OH)2. The basic strength of Ca(OCH3)2 ranged from 11.1 to
15.0, which is higher than non-activated CaO, Ca(OH)2, and
activated CaO, which ranged from 10.1 to 11.1. Hence, Ca(OCH3)2

has a higher catalytic activity. Ca(OCH3)2 further reacts with
glycerol formed as by-product and the CaO-glycerin complex,
which also possesses high catalytic activity, advances the reaction.
The formation of Ca(OCH3)2 and CaO–glycerin complex using
activated CaO as catalyst is proposed to accelerate the transesteri-
fication reaction [23]. CaO has also been used with sunflower oil
for biodiesel development under supercritical conditions. Yield of
methyl ester increased when CaO was added in supercritical condi-
tions as a catalyst. The reaction took just 6 min. for completion at
252 �C, 41:1 (methanol to oil) molar ratio, and 3 wt.% CaO
(Fig. 6). However, this did not seem to be practical because without
catalyst, similar conversion has been achieved in 20 min reaction
time under supercritical conditions [24].

Leaching aspects of CaO as heterogeneous catalyst have been
investigated by Granados et al. [25]. To avoid the influence of air
and moisture, in situ studies were carried out. Filtration of the
products was done by submerging the basket in reaction medium.
Conductivity of the liquid in contact with the catalyst was also
determined in situ. It was observed that CaO was more soluble in
glycerol–methanol and biodiesel–glycerol–methanol mixtures
compared to that in methanol. The larger solubility of CaO in
glycerol mixture was attributed to the formation of calcium diglyc-
eroxide, which was formed from reaction of CaO and glycerol. The
activity of the leached catalyst was observed to be small in
comparison to that arising from the heterogeneous site when the
catalyst loading was more than 1 wt.% CaO.

Lanthanum, when added to calcium oxide, has enhanced the
basic strength, total basicity, and Brauner, Emmet and Teller
(BET) surface area of the catalyst. A high yield (94.3%) was achieved
with 20:1 (alcohol to oil) molar ratio, 5% catalyst dose, in 60 min
reaction time with refined soybean oil. High yield (96%) was also
achieved with crude oil and waste cooking oil having free fatty acid
(FFA) and water content in 3 h reaction time. Fourier Transform
Infrared (FTIR) study suggested methanol was adsorbed on the cat-
alyst through –OH bonds, resulting in fatty acid methyl ester for-
mation. When water (4%) was added to the reaction mixture,
similar yield of 94.8% was achieved in slightly longer duration
(i.e. 90 min) in comparison to 60 min without water content
(Fig. 7). Presumably, water did not change the total basicity of
lanthanum-loaded CaO. Similarly, FFA amounts up to 3.6% were

tolerable for the functioning of the catalyst [26]. Eggshell compris-
ing of calcium carbonate as a major constituent was utilized as a
potential catalyst by Wei et al. [27]. The catalyst calcined above
800oC resulted in formation of CaO and was found to the most ac-
tive with yield in the range of 97–99%. This is attributed to the for-
mation of crystalline CaO as the active phase. A moderate molar
ratio of 9:1 (methanol to oil) at 65 �C reaction time, and 3 wt.% cat-
alyst calcined at 1000 �C resulted in high conversion. The catalyst
was reused 13 times without deactivation. Activity was reduced
after the 13th run and was finally totally deactivated after 17 runs,
after which the catalyst was changed from CaO to Ca(OH)2. Dolo-
mite {CaMg(CO3)2}, a natural rock has been used as a heteroge-
neous catalyst due to its high basicity, low cost, less toxicity and
environmental friendliness [28]. Calcination of parent dolomite at
600–700 �C followed by precipitation from the Ca(NO3)2 solution
and again calcination at 800 �C gave high methyl ester content of
99.5% at 15:1 (methanol to oil) molar ratio. The catalyst was reused
3 times with conversion of 95%. In the fourth and fifth run, conver-
sion reduced to 62.2% and 16.5%, respectively. CaO produced from
Ca(OH)2 in the crystalline phase has been assumed to be the major
active site in the dolomite after its calcination.

Economic assessment has also favored CaO as heterogeneous
catalyst, which can be separated either by hot water purification
process or vacuum distillation process when compared with the
similar process adopted with homogeneous catalyst (KOH). It
was observed that the manufacturing cost of biodiesel from waste
cooking oil using CaO as catalyst manufactured in batch process
with a plant capacity of 7260 tonne/year with hot water purifica-
tion process and vacuum distillation process was 584 and
622 $/tonne of biodiesel. Using KOH as catalyst, the manufacturing
cost of biodiesel with same plant capacity utilizing hot water puri-
fication process and vacuum distillation process was 598 and
641 $/tonne of biodiesel [29].

2.2. Strontium oxide as catalyst

Among alkaline-earth metal oxides, SrO has also attracted
attention as a heterogeneous catalyst owing to its high basicity
and insolubility in methanol, vegetable oil and methyl esters
[30]. A yield of 95% has been attained at a comparatively moderate
temperature of approximately 65 �C within 30 min. The catalyst

Fig. 6. Catalyst, CaO [24]. Effect of CaO content on methyl ester yield. [Reaction
conditions: methanol to oil molar ratio, 41:1; reaction temperature, 252 �C].

Fig. 7. Catalyst, CaO–La2O3 [26]. Yield of fatty acid methyl ester (biodiesel) with
different water addition on Ca3La1 {(La(NO3)3 to Ca(Ac)2 molar ratio 3:1}-catalyzed
process. [Reaction conditions: Ca3La1 amount, 5%; methanol to oil molar ratio, 20:1;
reaction temperature, 58 �C; reaction time, 90 min].
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has been reported to have a longer lifetime and could be reused for
10 runs. SrO has been reported to have the advantage of possessing
a basic site stronger than H_ = 26.5 and is also insoluble in metha-
nol, vegetable oils and fatty acid methyl esters. The reaction mech-
anism is similar to that of CaO which involves various steps where
initially surface methoxide anion (CH3O-) is formed having high
catalytic activity. In the next step, the CH3O� attached to the sur-
face of SrO is attracted by the carbonyl carbon atom of the triglyc-
eride molecule to form a tetrahedral intermediate. The tetrahedral
intermediate formed picks up H+ from the surface of SrO. The final
step results in the rearrangement of the tetrahedral intermediates
to form biodiesel. Table 1 depicts the oxides used as catalysts and
their reaction conditions.

2.3. Mixed oxides as catalysts

A mixed oxide of zinc and aluminum has been synthesized for
application as a heterogeneous catalyst resulting in high conver-
sion (98.3%) of biodiesel and glycerol of more than 98% purity. A
transparent and colorless glycerol is obtained without any ash or
inorganic compound. The process of preparation of catalyst has
not been described and the study reports utilization of high tem-
perature and pressure during the reaction. This will certainly
amount to high cost of biodiesel fuel and will limit its application
over other potential catalysts [31]. ZnO loaded to Sr(NO3)2 and
Ba(NO3)2 has also shown to act as catalyst in transesterification
reaction. However, the conversion obtained has been quite low
compared to CaO and MgO catalysts discussed above. Sr(NO3)2

on ZnO was calcined at 600 �C for 5 h. After calcination, 5 wt.% of
the catalyst gave conversion of 94.7% with 12:1 (alcohol to oil) mo-
lar ratio in 5 h at reflux of methanol. However, when tetrahydrofu-
ran (THF) was used as co-solvent (for better contact of methanol
and oil), the conversion increased to 96.8%. The amount of Sr(NO3)2

loaded on ZnO was optimized to be 2.5 mmol/g. A further increase
in this dose resulted in decrease in the activity of the catalyst,
which was due to the coverage of the excess Sr(NO3)2 on surface
basic sites. SrO derived from the thermal decomposition of
Sr(NO3)2 after calcination was assumed to possess the main cata-
lytic sites. Thus, conversion is observed to increase only after addi-
tion of THF as co-solvent which will incur additional cost and will
need additional step for its removal from the product formed as
biodiesel [32].

Calcium methoxide, Ca(OCH3)2, which has often been used as
a homogeneous catalyst, has been tried as a heterogeneous solid
base catalyst by Liu et al. [33]. By virtue of its low solubility in
methanol (<0.04%), high surface area (19 m2/g), and average pore
diameter of 40 nm, the catalyst was assumed to be favorable for
liquid phase reactions. SEM study revealed large agglomerate
particles on the surface of the catalyst. Biodiesel yield of 98%
was obtained with 2.0 wt.% of Ca(OCH3)2 catalyst in 3 h reaction
time at 65 �C with a 1:1 methanol to oil volume ratio. The
catalyst was reused up to 20 times with yield more than 90%.
However, a leachability study was not conducted to ascertain
the extent of the heterogeneous nature of the catalyst.
MgOx(OCH3)2�2x and Ca(OCH3)2 were tested by Martyanov et al.
[34] for their suitability as heterogeneous catalysts for transeste-
rification of tributyrin. Leaching of Ca(OCH3)2 has been reported
where dissolution occurred without deactivation of the catalyst.
Ca(OCH3)2 initially acted as a heterogeneous catalyst, but later
its reaction with glycerol (formed as a co-product) resulted in
formation of soluble species (i.e. calcium salts of butyric acid)
that did not contribute to catalytic activity. MgOx(OCH3)2�2x,
when prepared in the powder form by vacuum evaporation
method, possessed weak heterogeneous activity which was
attributed to occupancy of the surface of the catalyst by butyric
salt species. The catalyst was deactivated after 4 h reaction time,

Table 1
Various oxides used as heterogeneous catalysts.

Heterogeneous catalyst Calcination Reaction conditions Conversion
(C)/yield (Y) (%)

References

Temperature (�C) Time (h) Molar ratio
(methanol to oil)

Reaction time (h);
temperature (�C)

Catalyst
amount
(wt.%)

(SBA-15/MgO) Impregnation method 450 16 – 5; 220 – C = 96.0 10
(SBA-15/MgO)

In situ coating
550 6

KOH/MgO 500 5 6:1 7–9; reflux of methanol 3.0 C = 99.4 and Y = 95.1 11
K2CO3/MgO 600 3 6:1 2; 70 1.0 Y = 99.0 12
Nano MgO – – 36:1 0.17; 260 3.0 C = 99.3 13
MgO�MgAl2O4 – – – 10; – – Y = 57 14
CaO 850–900 1.5 9:1 2.5; 70 1.5 C = 93 15
Activated CaO Outgassing at 700 �C 2 13:1 1.5; 60 1 Y = 94 16
CaO 550 5 12:1 3; 65 8 Y = 95 19
Calcium oxide supported

on mesoporous silica (SBA-15/CaO)
800 1 12.1 5;60 1 Y = 95 20

NaNO3/CaO, 600 5 6:1 3; 60 5 C = 100 21
KNO3/CaO,
LiNO3/CaO,
LiNO3/MgO
CaO Activation done by stirring at

25 �C for 1 h
– 3; 60 2.6 Y = 90 23

CaO Supercritical conditions 41:1 0.17;252 3 Y = 100 24
CaO 430 �C for 1 h, then 750 �C for

8 h, then activation at 750oC for
8 h in pure nitrogen flow

20:1 1; 58 5 Y = 94.3 26

CaO from eggshell 800–1000 2 9:1 3; 65 3 Y = 97–99 27
CaO from dolomite i. 600–700 followed by

precipitation from Ca(NO3)2

and then at ii. 800–700

15:1 3; 60 10 C = 99.9 28

SrO 1200 5 12:1 0.5; 65 3 Y > 95 30

Y.C. Sharma et al. / Fuel 90 (2011) 1309–1324 1315



Author's personal copy

possibly due to the accumulation of the butyric salt species on
the surface of the catalyst.

Various metal oxide catalysts such as CaMnO3, Ca2Fe2O5, Ca-
CeO3, and CaZrO3 gave methyl ester yield ranging between 79%
and 92% at 60 �C 6:1 (methanol to oil) molar ratio in 10 h. A long
reaction time and moderate conversion is unlikely to be adopted
on a commercial scale of production of biodiesel. The basic
strength (H_) of these catalysts were in the range 7.2 < H_ < 9.3. Ca-
TiO3, with basic strength of 6.8 < H_ < 7.2, gave an average yield of
79% in 10 h. CaTiO3, when reused, gave biodiesel yield of 79% in the
first re-run in 10 h reaction time. Surprisingly, in the second re-run,
yield increased to 85%. However, catalytic activity decreased in the
third re-run and yield reduced to 68% and almost nil (1%) when
used for the fourth time. The reason attributed for the decline in
catalytic activity is the obstruction of catalytic activity by glycerin
and adsorption of fatty acids to the active sites of the catalyst. An-
other reason for the decreased catalytic activity is thought to be
dissolution of catalytic-active species by the glycerin solution. Sim-
ilar trends were observed with CaMnO3 and Ca2Fe2O5. On the other
hand, CaZrO3 and CaCeO3 were used for 5 and 7 times, respectively,
with a methyl ester yield greater than 80%. CaCeO3 has been re-
ported to be CaO-supported on CeO3 which imparts a better stabil-
ity and active basic sites to the compound [35]. Leaching studies
were not conducted to see if there was any leaching of the catalyst.

Ca–Zn mixed oxides (CaO�ZnO) prepared by co-precipitation
have been used as catalysts for transesterification by
Ngamcharussrivichai et al. [36]. The mixed oxide contained CaO
and ZnO as nano-clusters possessing smaller particle size and high
surface area in comparison to pure CaO and ZnO. Increasing the
amount of Zn in the mixed oxide resulted in particle size reduction,
thus increasing surface area and hence enhancing the activity of
the catalyst. The mixed oxide resulted in decreased calcination
temperature (785 �C) required for decomposition of calcium car-
bonate. Complete decomposition of CaCO3 occurred at 800 �C. Add-
ing Na2CO3 as co-precipitant resulted in formation of CaO�ZnO,
which proved to be an even better catalyst. Ca–Zn ratio of 0.25:1
and calcination temperature of 800 �C gave methyl ester yield of
94.2%. A Ca–Zn ratio > 1 decreased the yield substantially. Reaction
conditions were: a high molar ratio, i.e. 30:1 (methanol to oil); cat-
alyst 10 wt.%; in 3 h at 60 �C. A comparatively high molar ration
and high quantity of catalyst will incur high cost too. However,
the study is significant in reducing the calcination temperature of
CaCO3 and Reuse of the catalyst gave yield of more than 90% up
to 3 times after washing with methanol and 5 M ammonium
hydroxide [36].

A study on continuous process for development of biodiesel by
porous zirconia, titania and alumina micro particulate for simulta-
neous esterification and transesterification of fatty acids has been
described by McNeff et al. [37]. This Mcgyan process (named after

the three inventors: McNeff, Gyberg, and Yan) uses supercritical
methanol as reactant and does not require surface modification
of the catalyst. The process is anticipated to reduce the production
cost of biodiesel as feedstock with higher FFA could be converted to
fatty acid alkyl esters. Titania catalyst was reused effectively up to
115 h of continuous operation without loss of activity. The process
has been quite effective for algae as potential and suitable feed-
stock because algae possesses higher fatty acids and can grow rap-
idly under controlled conditions [37]. Mixed Mg–Al and Mg–Ca
oxides were compared as catalyst for transesterification reaction.
Mg–Ca oxide performed better owing to high surface area and
presence of strong basic sites on the surface coming from Ca2+–
O2� pairs. Ninety two percent yield was achieved by the catalyst
with optimized reaction conditions of 12:1 alcohol to oil molar ra-
tio at 60 �C reaction temperature [38]. Mg–Al mixed oxide as cata-
lyst in the reaction medium caused leaching leading to both
homogeneous and heterogeneous pathway. Yield of 93% was ob-
tained under optimized reaction conditions. The basicity of the
Mg–Al mixed oxide contributed only 23% yield of methyl ester
and the rest of the yield was attributed to the leached catalyst
which indicates the catalyst to be more of homogeneous nature
and hence unsuitable for use as solid catalyst [39]. Table 2 lists
the mixed oxides used as catalysts along with the reaction
conditions.

3. Hydrotalcite/Layered Double Hydroxide (LDH) derived
catalysts

Hydrotalcite or Layered Double Hydroxide (LDH) is an anionic
and basic clay found in nature with the general formula of
(½Mzþ

ð1�xÞM
3þðOHÞ2�bþðAn�

b =nÞ �M H2O), where Mz + is a divalent or
monovalent cation and An� is the interlayer anion [40]. A pioneer-
ing work on hydrotalcites being used as catalyst for synthesis of
biodiesel has been provided by Helwani et al. [1] and Zabeti
et al. [3]. Hydrotalcites/LDH has been used as catalyst as well as
support for exogenous catalytic species. Catalyst supported on
LDH, may be at the surface or between the LDH structure layers.
The value of x usually ranges from 0.20 to 0.33. However, reports
are also available with value of x higher than 0.33. Hydrotalcite
are an important group of catalyst as their acid and basic proper-
ties can be controlled by varying their composition and hence have
been tried extensively for synthesis of biodiesel. The commonest
hydrotalcite is Mg6Al2(OH)16CO3�4H2O and the conventional
method of its synthesis is co-precipitation method [1]. Siano
et al. [41] observed that the Mg/Al molar ratio of 3–8 was optimum
for high catalytic activity was found to be active even in the
presence of high amount of water (i.e. 10,000 ppm). Di Serio
et al. [6] reports four groups of basic sites to be found in Mg–Al

Table 2
Mixed oxides used as heterogeneous catalysts.

Heterogeneous catalyst Calcination Reaction conditions Conversion (C)/yield (Y) (%) References

Temperature (�C) Time (h) Molar ratio
(methanol to oil)

Reaction time (h),
temperature (�C)

Catalyst
amount (wt.%)

Sr(NO3)2/ZnO 600 5 12:1 5; 65 5 C = 94.7, C = 96.8
(with tetrahydrofuron
as cosolvent)

32

Ca(OCH3)2 Dried at 105 1 Volume ratio (1:1) 2; 65 2 Y = 98 33
CaMnO3,

Ca2Fe2O5,
CaCeO3,
CaZrO3,
CaTiO3

For CaTiO3, first at 500 �C, then at
1500 �C for 2 h For Ca2Fe2O5 and
others, first at 900 �C, then at
1500 �C for 4 h

6:1 10;60 10 Y = 79–92 35

CaO�ZnO 800 – 30:1 1; 60 10 C = 94.2 36
Mg–Ca oxide 500 6 12:1 60 2.5 Y = 92 38
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hydrotalcites. These includes weak basic site related to OH� sur-
face groups; medium basic site related to oxygen in MgO and
Al2O3; and strong basic sites and super-basic sites related to O2�

anions. Mg–Al hydrotalcites also possesses large pore size which
result in its high catalytic activity in comparison to that of MgO.
Mg–Al hydrotalcites (½Mg2þ1�xÞAlxðOHÞ2�x þ ðCO3Þ2�x=n) synthesized
via alkali-free co-precipitation method were effective for biodiesel
synthesis. (NH4)2CO3 and NH4OH were used as precipitation agents
for catalyst preparation [42]. High pH facilitated the incorporation
of Mg into the hydrotalcite owing to increased solubility of
Mg(OH)2 over Al(OH)3. Hydrotalcites possessed larger pores
(20 nm) than Al2O3 and MgO. The activity of higher-loaded Mg
hydrotalcites (21–24 wt.%) was found to be comparable to that ob-
tained by Li-doped CaO solid base catalyst reported by Watkins
et al. [22]. The increase in basicity of the catalyst has been attrib-
uted to increased intralayer electron density of Mg-rich
hydrotalcites.

Calcined Mg–Al hydrotalcite {Mg6Al2(OH16)CO3�4H2O, which
had earlier been used as a heterogeneous catalyst in various
base-catalyzed reactions (Aldol condensations, Michael reaction,
cyanoethylation of alcohols, and nitroaldol reaction) has been used
for transesterification reaction by Xie et al. [43]. Mg6Al2(OH16)-
CO3�4H2O has been used for transesterification reaction of soybean
oil. Part of the Mg2+ in the hydrotalcite is assumed to be replaced
by Al3+ ions, forming positively charged layers. Calcination at high-
er temperature decomposes the hydrotalcite into interactive and
well-dispersed Mg–Al oxides of higher surface area possessing hy-
droxyl groups and strong Lewis basic sites associated with O2�Mn+

acid–base pairs. Basic sites associated with structural hydroxyl
groups and strong Lewis basic sites associated with O2�Mn+ acid–
base pairs are developed. Conversion of the soybean oil to methyl
esters increased with hydroxyl value of the liquid phase. Maximum
basicity was observed at an Mg/Al molar ratio of 3.0, beyond which
the basicity of the catalyst decreased (Fig. 8). The basic strength of
the samples ranged from 9.3 to 15.0. The main basic sites were ob-
served in the H_ range of 7.2–9.8. Other sites were also observed in
the H_ range of 9.8–15.0. Conversion obtained was 67% with
600 rpm and 35% with 100 rpm. Although only 67% conversion of
the feedstock to esters was achieved, Xie et al. [43] found the cat-
alyst was easily separable. Though still, this will not justify its
application as heterogeneous catalyst as the European Norm (EN)

states conversion to be at least 96.5%. In Mg–Al hydrotalcite-de-
rived catalyst {Mg6Al2(CO3)(OH)16�4H2O} for the transesterification
of poultry fats, basic site was found to be the influencing factor for
the transesterification reaction. Influence of Lewis acid sites (from
Al3+ centers) was observed to have limited role in the reaction. The
calcination temperature has also been reported to be one of the
important factors for the performance of heterogeneous catalysts.
Sufficient temperature during the calcination process should be in-
duced so as to break down the ordered structure, remove the coun-
ter-balancing anions, and induce phase transitions within the
oxide lattice. However, calcination temperature should not be so
high as to avoid the formation of MgAl2O4 and the segregation of
the alumina phase. The catalyst was deactivated after the first
reaction cycle which is attributed to deactivation of the strongest
accessible base sites. However, simple re-calcination in air allowed
the complete restoration of the catalyst. Maximum yield (94%) and
conversion (98%) of fatty acid methyl ester was observed at a high
molar ratio (60:1) of methanol to oil in 6 h reaction time, but the
separation of biodiesel and glycerol was not sharp. At a lower mo-
lar ratio, the time taken to attain similar conversion was 3, 5, and
15 times more with molar ratio 30, 15, and 6 respectively. Such a
high molar ratio will add to the cost of biodiesel and will not be
favored at industrial level of production. Addition of a co-solvent
such as tetrahydrofuran, hexane, or toluene could not enhance
the conversion of poultry fats. However, Mg–Al mixed oxide was
found to be thermally and mechanically stable and no significant
difference was observed in particle size and morphology of the
used catalyst as evidenced by SEM. The similar Mg–Al ratio of
the fresh and used catalyst also confirmed that the catalyst did
not leached in the reaction mixture [44]. Hydrotalcite prepared
by co-precipitation method has also been used for immobilization
of lipase and was found to effectively produce methyl esters from
waste cooking oils with yield of 92.8% as compared to 95% obtained
from free enzyme solution. However, the time required to attain
optimum yield was 105 h which is lengthy in comparison to that
taken by other solid catalysts and will pose a constraint at indus-
trial level of production (Fig. 9) [45].

Hernandez et al. [46] have done a modification by loading so-
dium in calcined hydrotalcite to enhance the activity of the cata-
lyst. The catalyst was found to work at a low temperature (60 �C)
and with neat soybean oil and used frying oil with an acid value
of 0.08 and 1.9 mg KOH/g respectively. The Mg–Al mixed oxide
was calcined at 500 �C for 8 h and sodium was incorporated using
sodium acetate. The yield of methyl ester obtained was 88% and
67% for soybean oil and used frying oil respectively [46]. A hydro-
talcite, [Zn1�xAlx(OH)2]x+ (CO3)x/2n�mH2O has been used as a precur-
sor to prepare Zn/Al complex oxide catalyst tolerant to FFA and
water content in oil. The oil conversion was more than 83.6% with

Fig. 8. Catalyst, calcined Mg–Al hydrotalcite [43]. Soluble basicity of hydrotalcite
with different Mg/Al molar ratios. [Reaction conditions: methanol to oil molar ratio,
15:1; catalyst amount, 7.5%; reaction time, 9 h; reaction temperature, methanol
reflux].

Fig. 9. Catalyst, hydrotalcite immobilized by lipase [45]. Effect of reaction time on
methyl ester yield. [Reaction conditions: reaction time, 22–105 h; reaction temper-
ature, 24 �C].

Y.C. Sharma et al. / Fuel 90 (2011) 1309–1324 1317



Author's personal copy

water content as high as 10% and FFA content up to 8 wt.% under
optimized sub critical reaction conditions. The catalyst got deacti-
vated possibly by adsorption of oil on the surface of the catalyst
and was regenerated by immersing in an alkali solution and incin-
erating it at 400 �C [47].

The immobilization of enzyme on Mg–Al hydrotalcite was
found to modify the microenvironment of lipase and minimize
the affect of external factors such as temperature, pH, and ionic
species thus being more stable than free lipase. The immobilized
lipase (Saccharomyces cerevisiae) from yeast was found to retain
95% catalytic activity in comparison to 88% by free lipase [48]. Con-
version of 96% was achieved in considerable reaction time (4.5 h).
Conversion increased to 96.4% with the addition of a small amount
of water (i.e. 2.0 wt.%) which enhanced the esterification rate. More
water caused hydrolysis and hence decreased conversion. How-
ever, the immobilized lipase was sensitive to FFA, and optimum
conversion was obtained at acid value 0.5 mg KOH/g. The
conversion of methyl esters decreased with increase in acid value.

Conversion of methyl esters gradually dipped to 81.7% at 3.5 mg
KOH/g acid value. With increase in acid value (4 mg KOH/g), con-
version was 66.9% which further decreased to <50% when the acid
value of feedstock was 6 mg KOH/g. Conversion >81% was observed
till 10 runs and gradually decreased after subsequent runs. At the
end of the 14th run, 54.1% conversion was achieved. This has been
attributed to the formation of water as co-product, enzyme dena-
turation, and loss of enzyme during filtration.

Contrary to this Barakos et al. [49] report that FFA enhanced the
conversion by acting as acid homogeneous catalyst simultaneously
with Mg–Al–CO3 hydrotalcite catalyst. The activity of the calcined
catalyst was found to be lower than the initial activity of the non-
calcined catalyst. Final yield achieved was the same with uncal-
cined, calcined catalyst, and reused catalyst. However, the non-cal-
cined catalyst was deactivated after transesterification reaction,
which has been attributed to high temperature (200 �C) adopted
during the reaction. Ninety nine percent conversion was achieved
with cotton seed oil having higher acid value and water content
in 3 h reaction time. The catalyst could perform esterification as
well as transesterification reaction [49].

Mg–Al hydrotalcites after calcination at 500 �C for 12 h gave
90.5% conversion of biodiesel. The conversion is low as per the
EN norm. However, the reaction conditions used were moderate,
i.e. 6:1 (alcohol to oil) molar ratio, 1.5 wt.% catalyst, and 4 h reac-
tion time at 65 �C and moderate rate of stirring (300 rpm). The cat-
alyst was found to be separable by filtration and was recycled for 3
runs with a minor loss in its activity (>88% conversion) [50]. 1.5%
potassium loaded on Mg-Al hydrotalcite was found to enhance
the catalytic activity of hydrotalcite and gave a high conversion
(96.9%) and yield (86.6%). However, longer duration for calcination
(35 h) was required for synthesis of the catalyst which is energy
intensive. Biodiesel developed was blended with diesel {to form
B10, i.e. 90 part diesel and 10 part biodiesel (v/v)} and its impact
on performance of elastomers in the fuel system component were
close to that of diesel and established its compatibility [51].

KF loaded on hydrotalcite by co-precipitation method was
found to have enhanced activity as catalyst. After loading with
KF, a new phase formation of KMgF3 and KAlF4 was observed and
assumed to be the active component of the catalyst. An 80%
(wt/wt) load ratio of KF/hydrotalcite with 12:1 (alcohol to oil)
molar ratio gave a yield of 92% in 5 h reaction time at 65 �C [52].

Fig. 10. Catalyst, MgO, MgMO, ZnMgMO, ZnO, Al2O3 [51]. Methyl esters yield for
the catalysts at different temperature. [Reaction conditions: methanol to oil molar
ratio, 55:1; reaction time, 7 h].

Table 3
Hydrotalcite/layered double hydroxide based heterogeneous catalysts.

Heterogeneous catalyst Calcination Reaction conditions Conversion (C),
yield (Y) (%)

References

Temperature (�C) Time
(h)

Molar ratio
(methanol to oil)

Reaction time (h),
temperature (�C)

Catalyst
amount (wt.%)

Mg–Al hydrotalcite
Mg6Al2(OH16)CO3�4H2O

500 8 15:1 9; reflux of methanol 7.5 C = 67 43

Na/hydrotalcite with soybean
oil

500 8 15:1 8; 60 7.0 Y = 88 46

Na/hydrotalcite with used
frying oil

9:1 8; 60 7.0 Y = 67

Zn/Al complex oxide derived
from hydrotalcite

450 8 24:1 1.5; 200;
Pressure = 2.5 MPa

1.4 C = 83.6 47

Mg–Al–CO3 hydrotalcite 350 6 6:1 3; 180–200 1 C = 99 49
Mg–Al hydrotalcites 500 12 6:1 4; 65 1.5 C = 90.5 50
Mg–Al hydrotalcite 450 35 30:1 6; 100 7 C = 96.9, Y = 86.6 51

500 (after loading with
potassium acetate)

2

KF/hydrotalcite 450 3 12:1 5; 65 3.0 Y = 92 52
KF/Ca–Al hydrotalcite 550 5 12:1 3; 65 5.0 Y = 99.74 53
(Zn5(OH)8(NO3)2�2H2O) – – 6:1 (Time not reported);

140
6.0 C = 95.7 56

Mg–Co–Al–La
Layered double hydroxide

600 4 16:1 5; 200 2.0 Y = 96–97 57

[Al2Li(OH)6](CO3)0.5�nH2O 500 2 15:1 1; 65 1 Y = 83.1 58
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The catalytic activity was further enhanced by loading KF on Ca–Al
hydrotalcite prepared by co-precipitation method and a high yield
of 99.74% was obtained. The new crystal phases KCaF3, KCaCO3F,
and CaAl2F4(OH) were believed to be the active component in the
modified catalyst [53]. Mixed oxides {Mg(Al)O and ZnMg(Al)O}
were tried as solid base catalysts but their activity were found to
be lower than that obtained from MgO and a high temperature
(100–130 �C) was required. Among Mg(Al)O and ZnMg(Al)O, com-
paratively high yield was achieved with former than latter. With
ZnO and Al2O3, the yield obtained was less than 40% (Fig. 10) [54].

Poly(vinyl) alcohol membrane was been loaded with hydrotal-
cite and found to enhance the activity of the catalyst [55]. The
membrane embedded with poly(vinyl) alcohol matrix was made
hydrophobic either by total or partial acetylation (by treating with
acetic anhydride) or by treatment with succinic anhydride. The
modified catalyst was found to exhibit activity for more than 20
times as compared to the unsupported catalyst. After seven runs
the modified catalyst exhibited catalytic activity three times more
than the unsupported fresh hydrotalcite. The good activity of the
catalyst has been attributed to comparatively better swelling for
both the soybean oil and methanol.

Zinc hydroxide nitrate, Zn5(OH)8(NO3)2�2H2O, a layered hydrox-
ide salt, was found to be effective for esterification as well as
transesterification reaction. However, the reaction condition re-
ported was energy intensive (140 �C) during esterification and
transesterification {150 �C at 48:1 (methanol to oil) molar ratio}
[56]. The Mg3Al-LDH catalyst was found to give good catalytic
activity but got gelled which inhibited the possibility of its reuse.
This was overcome by incorporation of Co and La to the mixed
oxide to form spinal phase. The catalyst developed as Mg–Co–Al–
La resulted in high yield (96–97%) at 200 �C, 16:1 (ethanol to oil)
molar ratio and was reused for at least 7 times [57]. Li–Al LDH,
i.e. [Al2Li(OH)6](CO3)0.5�nH2O was found to give better activity after
calcination in comparison to Mg–Al, and Mg–Fe type LDH. To test
the heterogeneous nature of the catalyst, it was stirred in methanol
for 1 h and then filtered. The filtrate showed a trace amount of lith-
ium imparted by the catalyst. Although minimal amount of leach-
ing of lithium was observed during batch transesterification
reactions, the authors’ reports to be further working on fixed bed
mode of experiments for a comprehensive study on leaching and
stability aspect of the catalyst [58]. Various hydrotalcite/LDH cata-
lysts and their reaction conditions for synthesis of biodiesel are
summarized in Table 3.

4. Solid superbase catalyst

A rare earth metal oxide (Eu2O3) has been tried as heteroge-
neous catalyst by Sun et al. [59]. KF loaded on Eu2O3 prepared by
impregnation method and calcined at 600 �C for 4 h resulted in for-
mation of F�, thus introducing KOH or hydroxyl groups on the sur-
face of the catalyst and enhancing its activity. H_ of the catalyst
was above 15.0, showing it to possess strong basic sites at its sur-
face. Eu2O3 loaded with 15 wt.% KF gave sufficiently high yield
(92.5%) under optimized reaction conditions. For the reuse applica-
tion of the catalyst, it was found that 15 wt.% KF has to be added to
the catalyst which got deactivated to achieve high yield (87.3%).
However, the leaching aspect of the catalyst was not determined
to check its residual amount in the products.

5. Alumina loaded with various compounds as catalyst

Aluminum is the third most abundant element in the earth’s
crust and its oxides have been utilized extensively as a potential
heterogeneous catalyst. Although alumina is acidic in nature, its
potential as a heterogeneous catalyst after loading with a base

compound has been an area of interest. Alumina loaded with var-
ious compounds has been found to be an efficient catalyst for syn-
thesis of biodiesel. Lacome et al. [60] report that 12.5 wt.% of TiO2

supported on Al2O3 was found to give 95% yield. However, a high
amount of methanol (as evident from 1:1 mass ratio of methanol
to oil), high temperature (200 �C) and high reaction time (7 h) were
needed for the reaction. Na/NaOH/c-Al2O3 used as a heterogeneous
catalyst along with the co-solvent n-hexane has shown activity
similar to that of the homogeneous one (i.e. NaOH with a yield of
94% in 2 h reaction time at 60 �C and 9:1 alcohol to oil molar ratio)
with moderate rate of stirring (300 rpm). The catalyst was pre-
pared by treatment of c-Al2O3 with sodium hydroxide followed
by sodium at 320 �C under controlled nitrogen flow. Loaded so-
dium has been proposed to be completely ionized and dispersed
into the defect sites of c-Al2O3 which was formed during thermal
pretreatment [61]. The electron pair donating ability of surface
oxygen atoms present on the catalyst was enhanced and developed
strong basic sites on the catalyst. 20 wt.% Na and 20 wt.% NaOH
incorporated on c-Al2O3 showed the highest activity. However,
leaching studies of the catalyst have yet to be performed to ascer-
tain the extent of heterogeneity of the catalyst [61]. An alkali metal
salt, K2CO3 loaded with alumina (Al2O3) by impregnation method,
was investigated for transesterification of triolein and resulted in
94% and 89% yield of ester and glycerol, respectively, at 60 �C in
1 h reaction time. This is significant as moderate temperature con-
ditions and less time are employed for a good yield (94%) of biodie-
sel. It was observed that basic strength did not necessarily enhance
a better conversion. The catalytic activity of K2CO3/Al2O3 was
found to be comparable to that obtained from 0.023 mmol of
KOH. Presence of water (0.5 mmol) while using K2CO3/Al2O3 as cat-
alyst slightly increased the yield of methyl oleate giving an indica-
tion that reaction is not sensitive to presence of water [62]. A solid
base catalyst of KNO3 loaded on Al2O3 resulted in formation of K2O
phase causing high catalytic activity. KNO3 (35 wt.%) calcined at
500oC for 5 h provided a high basic strength in the range 15–18.4
(corresponding to 6.67 mmol/g). K2O along with surface Al–O–K
were considered to be the main active sites that resulted in mod-
erate conversion (87.4%) of the soybean oil to methyl esters. It
was found that optimum conditions for reaction were 15:1 M ratio
with a catalyst amount of 6.5% in 7 h. [63]. Al2O3 loaded with
35 wt.% KNO3 by impregnation method has also been tried by Vyas
et al. [64]. A moderate conversion (84%) has been achieved after
calcining the catalyst for 4 h at 500 �C and undergoing transesteri-
fication reaction with a methanol to oil molar ratio of 12:1 and 6%
catalyst for 6 h reaction time at 70 �C and 600 rpm agitation. Ki-
netic studies of the experiments were carried out and activation
energy (E) was determined to be 26.96 kcal, which was low enough
to make the reaction insensitive to temperature. Attempts to reuse
the catalyst after drying and calcination gave reduced conversion
of methyl esters of 75% and 72% in the 2nd and 3rd runs, respec-
tively [64]. The catalyst owing to its moderate conversion effi-
ciency may not find application at industrial level of production.

Xie et al. [65] report base strength and the amount of base sites
to be important parameters for the activity of heterogeneous cata-
lyst. The potential of alumina (Al2O3) loaded with various potas-
sium compounds have shown varying catalytic activity. While,
conversion was not obtained with Al2O3, and Al2O3 loaded with
KCl; 87.4%, 85.8%, and 80.2% conversion were obtained with
Al2O3 loaded with KI, KF, and KOH respectively. The basic strengths
of these compounds with successful conversion were in the range
15.0–18.4 and assumed to be an important factor in catalyst activ-
ity. Other potassium compounds (KBr and K2CO3) loaded with
Al2O3 showed conversion of less than 50%. These compounds
showed H_ in the range 9.3–15.0. Al2O3 and KCl/Al2O3 showed no
reaction and had the weakest H_ of less than 7.2. KI, which showed
best catalytic activity, was then loaded on different carriers such as
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ZrO2, ZnO, and NaX. KI/Al2O3 displayed best catalytic activity with
87.4% conversion, followed by ZrO2 and ZnO showing 78.2% and
72.6% conversion, respectively. Other carriers (NaX and KL) showed
conversion of less than 30%. On increasing the catalyst amount a
high conversion of 96% with 2.5 wt.% of catalyst was observed with
KI/Al2O3.

NaOH, a homogeneous catalyst have been loaded on c-Al2O3

and its activity have been compared by Arzamendi et al. [66].
NaOH-loaded c-Al2O3 catalyst dried at 120 �C for 12 h was active
enough for transesterification reaction. For homogeneous catalysis
with NaOH, the ratio of catalyst to methanol was an important fac-
tor for the initial rate of transesterification reaction. Contrary to
this, the heterogeneous catalyst NaOH/c-Al2O3 was dependent on
the methanol to oil molar ratio applied for the reaction. Eighty
two percent conversion was achieved at 6:1 (methanol to oil) mo-
lar ratio and increased to 88% at 12:1 M ratio. The reaction almost
completed when the alcohol to oil molar ratio was raised to 24:1
because this high ratio favored the formation of methoxide, which
enhances the reaction rate. The extent of leaching was within 5%
after 9 h reaction time. Nevertheless, the low amount of leached
catalyst will have to be removed to make the biodiesel product
usable and acceptable in the market [66]. A three step calcination
at 300 �C, 550 �C, and 900 �C for 2, 3 and 8 h, respectively, trans-
formed Eu(NO3)3/Al2O3 (prepared by impregnation method) to
Eu2O3/Al2O3 and tried as a heterogeneous catalyst for synthesis
of biodiesel by Li et al. [67]. The catalyst, Eu2O3/Al2O3 (6.75% Eu),
increased H_ of the catalyst to 26.5 and augmented superbase sites
on its surface. A moderate conversion (63.2%) has been reported
from the catalyst at a temperature of 70 �C in 8 h reaction time
with 10 wt.% catalyst. Conversion is far below the minimum regu-
latory specification by EN norms and seems not suitable for appli-
cation as heterogeneous catalyst. Repeated use of the catalyst
further resulted in decrease in the conversion of fatty acids to
35.3% after 40 h reaction time. This has been attributed to loss of
the catalyst during its filtration and re-calcination, which
amounted to 6%. Reduction in BET surface area was also observed
for the used catalyst in subsequent runs which amounted to its
deactivation [67]. The leaching of potassium on potassium impreg-
nated c-Al2O3 (K2CO3/c-Al2O3) catalyst has been studied exten-
sively by Alonso et al. [68]. The catalyst gave 99% yield in 1 h,
but when was reused, the catalyst performance was reduced to
33, 6.5, and 3.8% in the 2nd, 3rd, and 4th runs, respectively.
Although the catalysts in their reuse application were not acti-
vated, such a drastic reduction in yield of biodiesel product was
attributed to deactivation of the active sites owing either to cata-
lytic poisoning or the possibility of catalyst leaching. However,
even re-calcination of the used catalyst showed low yield (<33%).
On the assumption that sintering did not occur on the surface,
either KAlO2-like or K–O–Al species is considered to have formed
at the surface, the leaching is proposed in the following manner:

KAlO2 þ CH3OH! AlOOHþ Kþ þ CH3O� ð1Þ

Solid KAlO2 is probably formed at the surface of the solid
catalyst which, on reaction with methanol, produces methoxide
ion (CH3O�), which is responsible for the homogeneous reaction
[68]. KF supported on Al2O3 by impregnation method showed
formation of a new phase (K3AlF6) after calcination. A yield of
>90% was obtained under optimal experimental conditions of
12:1 (alcohol to oil) molar ratio at 65 �C in 3 h. However, the cata-
lyst had to be regenerated each time before use. The process of
regeneration has not been described and thus needs further study
for its approval as a potential heterogeneous catalyst [69]. The test
of leaching of heterogeneous catalysts derived from alkaline and
alkaline-earth metal oxides during the reaction thus becomes an
important aspect to be checked. The type of support is a significant
factor for a catalyst to follow the heterogeneous pathway. KOH
loaded on Al2O3 and NaY prepared by impregnation method were
studied for transesterification by Noiroj et al. [70]. 25 and 10 wt.%
of KOH and NaY loaded on Al2O3 was found to be optimum. Load-
ing of KOH resulted in the formation of K2O as an active phase.
Increased loading of KOH (i.e. beyond the optimum amount)
resulted in formation of another new phase Al–O–K which pos-
sessed catalytic activity and basicity lower than K2O. Hence,
optimum amount of KOH loading is desirable for better perfor-
mance of the catalyst. Although yield (91.1%) from both of the
catalysts was the same, 51.3% of potassium was leached from
KOH/Al2O3 in comparison to only 3.2% by KOH/NaY. Hence, NaY
is assumed to be a good support for Al2O3 as a heterogeneous
catalyst [70].

Al2O3-supported alkali metal and earth metal oxides were used
as catalysts after calcination. High conversions of 94.3% and 91.6%
were observed with Ca(NO3)2/Al2O3 and Li(NO3)/Al2O3, respec-
tively. NaNO3/Al2O3 and KNO3/Al2O3 gave low yields of 24.7% and
34.5%, respectively. Calcination of NaNO3/Al2O3 and KNO3/Al2O3

catalysts could not convert the nitrate precursors to active oxide
forms, which was the case when Ca(NO3)2/Al2O3 and Li(NO3)/
Al2O3 were used as catalysts. Dissolution of NaNO3/Al2O3 and
KNO3/Al2O3 occurred wherein Na2O and K2O of about 70 and
45 wt.%, respectively, were observed during the elemental analysis
after transesterification. Using NaAlO2 as a commercial catalyst
gave 92% methyl ester content under the same reaction conditions
and it was assumed that NaNO3/Al2O3 and KNO3/Al2O3 calcined at
higher temperature could have followed the homogeneous path-
way. Ca(NO3)2/Al2O3 proved to be best among these catalysts ow-
ing to its lowest leachability (only 8 wt.% loss of CaO) [71].
Recently, Umdu et al. [72] used a microalga, Nannochloropsis ocula-
ta, as feedstock found that alumina loaded on CaO and MgO com-
pounds by modified single step sol–gel method as heterogeneous
catalyst was more active than pure CaO and MgO. 97.5% biodiesel
yield was achieved with 80 wt.% loading of CaO on Al2O3. To obtain
the high yield from the mixed oxide (CaO/Al2O3 and MgO/Al2O3),
basic strength was found to play an important role in addition to
that by basic site density. Various alumina-based catalysts are
shown in Table 4.

Table 4
Alumina based heterogeneous catalysts.

Heterogeneous
catalyst

Calcination Reaction conditions Conversion (C),
yield (Y) (%)

References

Temperature (�C) Time (h) Molar ratio
(methanol to oil)

Reaction time (h);
temperature (�C)

Catalyst
amount (wt.%)

KNO3/Al2O3 500 5 15:1 7; methanol reflux 6.5 C = 87.4 63
KNO3/Al2O3 500 4 12:1 6; 70 6 C = 84 64
KI/Al2O3 500 3 15:1 8; methanol reflux 2.5 C = 96.0 65
Eu2O3/Al2O3 300 �C for 2 h, 550 �C for 3 h, and 900 �C for 8 h 5:1–6:1 8, 70 10 C = 63.2 67
KF/Al2O3 600 3 12:1 3; 65 4.0 Y = 90 69
KOH/Al2O3 500 3 15:1 2; 60 3 Y = 91.1 70
KOH/NaY 3; 60 6
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6. Zeolites as catalyst

Zeolites are microporous aluminosilicate minerals. They are
commonly used as adsorbents for water and wastewater purifica-
tion. They have also been used as catalyst for fluid catalytic crack-
ing and hydro-cracking in petrochemical industry. Zeolites as
catalyst have the characteristics of acidic sites and shape selectiv-
ity. Zeolites vary in pore structure and inner electric fields from
crystal and surface properties which result in their varying cata-
lytic properties [73]. Zeolites have recently been tried as potential
heterogeneous catalyst for synthesis of biodiesel. A variety of zeo-
lites and metals have been tried as catalysts for transesterification
of soybean oil possessing free fatty acid (2.6%) by Suppes et al. [74].
The catalysts, ETS-10 (Na21.9K7.5Ti16.5Si77.5O208) and NaOx/NaX*
(* indicates sodium azide-loaded samples), showed higher conver-
sion of methyl esters (94.6% and 94.2%, respectively) at 120 �C for
24 h owing to their higher basicity and larger pore volume result-
ing in improved intra-particle diffusion. Optimum conditions were
calcination of catalysts at 500 �C, which resulted in the removal of
water and carbon dioxide from its surface. At low temperature
(60 �C) conversion obtained was less (<85%) even after 24 h reac-
tion time. At 100 �C reaction temperature, 92% conversion was
achieved in 3 h with diglyceride and monoglyceride concentration
of 4% and 2%, respectively. Presence of FFA had a significant effect
on the reaction and reduced the methyl ester conversion to less
than 13.7% even after 4 h reaction time. The catalyst has been re-
used without loss in its activity. As the temperature and time
needed for the reaction is high, a cost analysis of the process seems
to be a deterrent in their commercialization [74]. NaX zeolites (Si/
Al = 1.23) after loading with KOH increased the basic strength from
<9.3 to 15.0–18.4. The conversion achieved was moderate (85.6%)
by 10% loading of KOH on NaX beyond which its activity decreased
owing to agglomeration of active KOH phase and/or the coverage of
active base sites. The catalyst was reused after washing with cyclo-
hexane and heating for 2 h at 125 �C. The conversion of the methyl
esters then decreased to 48.7%, which was attributed to leaching of
KOH. However, when the catalyst was regenerated by impregna-
tion method, the yield obtained was 84.3%, which is comparable
to the initial yield achieved. The low conversion obtained with
the catalyst indicated presence of tri-, di-, and monoglycerides
which makes the biodiesel fuel off specification [75]. Still, the lea-
ched catalyst in the mixture cannot be ignored because it will hin-
der its application as a heterogeneous catalyst. Zeolites (mordenite,
beta, and X), when used as heterogeneous catalysts for transesteri-
fication of sunflower oil, gave methyl ester contents of 93.5–
95.1 wt.% at 60 �C reaction temperature. When the leaching studies
were carried out, sodium was found to have leached in the mix-
ture, giving the reaction a homogeneous pathway. However, metal
incorporation on the catalyst was observed to be far superior with
the widely used impregnation method than with the ion-exchange
method. This is attributed to absence of strong basic sites on the
catalyst by the ion-exchange technique. However, the method em-
ployed for the preparation of the catalyst was longer. This required
heating, drying, and calcining at 500 �C for 10 h, 120 �C for 12 h,

and 550 �C for 15 h respectively [76]. Y-type zeolites with different
Al2O3 content have yielded a low biodiesel conversions (26.6%) at a
high reaction temperature (>450 �C) with a 6:1 alcohol to oil molar
ratio for used vegetable oil and seems unsuitable as a heteroge-
neous catalyst [77]. Zeolites have also been tried as catalysts for
conversion of high FFA oils to FAME. NaY zeolites (basic in nature)
and VOx over Ultra Stable Y zeolite (USY) (acidic in nature) calcined
at 300 �C for 3 h showed conversion in just 10 min and 50 min,
respectively, and have been reported as potential alternates to
homogeneous catalysts for esterification. Presence of water had a
positive influence at the start of the reaction and negative influ-
ence later when the reaction proceeds further and thus lowers
the final conversion [78]. A lower calcination temperature of
450 �C instead of the commonly used temperature of 550 �C has
proved to be optimum for transesterification of oleic acid as feed-
stock using HBeta-400 and HBeta-550 zeolite. Calcination temper-
ature beyond 500 �C resulted in decreased conversion. Addition of
a small amount of water (i.e. 2–5 wt.% of fatty acids) has been
found to promote the conversion of fatty acids to biodiesel. How-
ever, further increase of the water content resulted in loss of cata-
lytic activity [79]. Table 5 summarizes zeolite-based catalysts used
for development of biodiesel.

7. Biodiesel synthesis by supercritical process

Biodiesel may be synthesized in supercritical process with cat-
alyst free reaction conducted at high temperature and high pres-
sure conditions. The process provide advantages such as
improved phase solubility, overcomes mass transfer limitations,
high reaction rate, easy separation and purification of the synthe-
sized products. The process may be carried out even in the pres-
ence of moisture and FFA. However, its application in large scale
production is limited by high cost involved because of high tem-
perature and pressure, and involving a high alcohol to oil molar ra-
tio. Madras et al. [80] synthesized biodiesel in temperature range
(200–400 �C), pressure of 200 bar, and alcohol to oil molar ratio
of 40:1. Almost complete conversion was observed in such super-
critical conditions in 40 min of reaction time with methanol as well
as ethanol. Supercritical carbon dioxide has been tried as an alter-
nate of supercritical alcohol because of non-toxic nature of the for-
mer [81]. However, the maximum conversion obtained was less
than 70% even after 5 h of reaction time with supercritical carbon
dioxide in comparison to complete conversion obtained by super-
critical alcohol. Bertoldi et al. [82] studied the effect of carbon diox-
ide as a cosolvent for synthesis of biodiesel in supercritical ethanol.
A continuous tubular reactor was used and a moderate yield (37%)
was obtained at optimized reaction conditions (350 �C, 10 MPa,
40:1 ethanol to oil molar ratio, and CO2 to substrate mass ratio
of 0.05:1 in 1 h. Almost similar yield (35%) was obtained without
addition of CO2 as cosolvent. Further increasing CO2 to substrate
mass ratio (i.e. 0.15:1, 0.3:1, and 0.5:1) decreased the yield of bio-
diesel. The reason attributed is low solubility of CO2 in oil and high
solubility in ethanol. This might have caused drawing of ethanol by

Table 5
Zeolites as heterogeneous catalysts.

Heterogeneous
catalyst

Calcination Reaction conditions Conversion
(C)/yield (Y) (%)

References

Temperature (�C) Time (h) Molar ratio
(methanol to oil)

Reaction time (h),
temperature (oC)

Catalyst
amount (wt.%)

ETS-10 500 4 6:1 24, 120–150 – C > 90 74
NaOx/NaX
NaX/KOH 120 3 10:1 8, 65 3 C = 85.6 75
Zeolites (mordenite, beta, and X) 550 15 – –, 60 – C = 93.5–95.1 76
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the cosolvent, CO2, from the oil phase thus decreasing the availabil-
ity of ethanol for reaction with vegetable oil.

Owing to high boiling point, a non-polar co-solvent, i.e. heptane
has been tried by Tan et al. [83] to study synthesis of biodiesel by
supercritical methanol. The optimum condition without a co-sol-
vent was observed at 360 �C and 22 MPa to obtain a yield of 80%.
With heptane as co-solvent 66% of yield was achieved at 280 �C.
However, the yield without the co-solvent at 280 �C has not been
reported which could have provided a better comparison for appli-
cation with and without the co-solvent. Transesterification in
supercritical condition (300–400 �C, 41.1 MPa) of a low cost feed-
stock, i.e. chicken fat has been tried by Marulanda et al. [84]. A
low molar ratio of 6:1 (alcohol to oil) was found to be optimum
for the completion of reaction in only 4–6 min. Another advantage
of the process was thermally decomposition of glycerol to low
molecular weight esters, ethers and hydrocarbons on reaction with
methanol. Formation of these products enhanced the fuel property
such as viscosity and cold flow properties. The process was also ob-
served to be non-reversible.

8. Conclusion

The review indicates a growing interest in the development of
heterogeneous catalyst. The emphasis laid on the application of
heterogeneous catalyst is mainly to overcome the limitation in-
curred by homogeneous one. These limitations were mainly: sepa-
ration of catalyst from reaction mixture, large amount of water
generated during washing stage. However, most of the catalysts
listed in the review require comparatively longer time duration
while some of them need higher temperature conditions. Modifica-
tion of the catalyst by an additional step, i.e. calcination at high
temperature also makes the process energy intensive. Calcination
leads to transformation of the origination compound to a new
compound that posses catalytic-active species. Calcination also en-
hances the basicity, pore size, and pore volume of the catalyst. This
is evidenced from MgO as catalyst which initially did not showed
catalytic activity, but after its modification (calcination, etc.), a
high yield and conversion was obtained.

With oxides of calcium, magnesium, and strontium as catalyst
modification by calcination was needed. However, moderate reac-
tion conditions led to almost complete conversion and a high yield.
Among the oxides, CaO was found to be reused for quite a large
number of times (e.g. 20 runs) which is significant in economic
point of view. Using mixed oxides as catalyst, moderate conversion
and yield was obtained and hence oxides of calcium and magne-
sium are preferable over these catalysts. CaO was also found to
be resistant to some amount of water/moisture in the reactant
mixture which will reduce the pretreatment cost of feedstock
and alcohol.

Hydrotalcite/layered double hydroxide when used as heteroge-
neous catalysts also gave high conversion and yield. However,
most of these catalyst required high temperature (100–200 �C)
for synthesis of biodiesel and are thus energy intensive. Most of
these catalysts also employed a high molar ratio which will result
in high consumption of methanol, a toxic solvent.

Alumina loaded with various compound have been tried as
catalyst and have shown varying results. Alumina loaded with
KNO3 and Eu2O3 have shown conversion less than 90%, whereas
alumina loaded KF and KOH has shown high yield of 90–91%.
On contrary KI/Al2O3 has shown a high conversion of 96% and
is near to the specification of EN 96.5%). Zeolites have shown con-
version ranging from 85% to 95% and have taken longer reaction
time for completion of reaction and thus will need further mod-
ification for a higher yield and conversion to meet the interna-
tional specifications.

Various heterogeneous catalysts resulted in conversion less
than the minimum value (96.5%) prescribed by the European norm
and hence will find little applicability at industrial level of produc-
tion. New materials have been tested for their applicability as a po-
tential heterogeneous catalyst. More of the feedstock tried for
transesterification reaction has been from the edible feedstock
(sunflower, soybean, etc.) which have low acid value. Only few
studies have been conducted for transesterification reaction with
non-edible oil, waste cooking oil, and algae which are the future
feedstock. Hence the compatibility of heterogeneous catalysts with
these feedstocks should be done extensively. As a potential cata-
lyst, waste materials (egg shell) have also been successfully used
as heterogeneous catalyst. Catalysts synthesized from waste mate-
rial will certainly make the process cost effective and will also
manage the waste product. More of such type of catalysts will cer-
tainly make the process green and sustainable in future. Neverthe-
less, higher conversion and yield of biodiesel obtained from the
heterogeneous catalyst comparable with that of the homogeneous
catalyst makes the former an upcoming catalyst for the future in
biodiesel development. Reuse of the heterogeneous catalyst is an-
other important aspect which makes it economic and preferable
over the homogeneous one. However, the catalyst got deactivated
in most of the catalysts utilized for transesterification and had to
be reactivated by calcination or dosing with compounds. Even after
reactivation, there is a limited run for which a catalyst worked and
had to be discarded. Many of the heterogeneous catalysts suffered
from some limitations such as low activity, and leaching which are
being tried to overcome and further research are going to make
these catalysts more specific and selective towards the transesteri-
fication and applicable for application at industrial level of
production.

The energy efficiency and cost aspect of biodiesel is a very
important aspect and has to be dealt exhaustively for a catalyst.
This has been dealt to some extent in the review paper by examin-
ing the calcination temperature and time, reaction conditions (mo-
lar ratio, time, temperature, and the type and amount to catalyst
used). This is a general assumption and does not necessarily be
used for comparison of catalyst to be suitable in industrial point
of view. A technique that utilizes supercritical conditions has
gained attention for the synthesis of biodiesel where the catalyst
is generally not added. A high temperature, pressure, and alcohol
volume is needed which makes the process costly. However, the
process is tolerant to high FFA and water contents in the feedstock
and the reaction gets completed in comparatively shorter time
duration.
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