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Introduction

Figure 1: Sustainable biofuels must take into consideration 
the economic, social, and environmental impacts. 

With the increasing numbers of humans on our planet comes 
a greater need for energy to survive and advance. This worldwide  

 
“gap” between adequate, readily available, affordable, and non- 
polluting sources of energy vs. increasing need for energy is 
becoming alarmingly wider every year. This gap can be narrowed 
or slowed down in various ways such as through decreased energy 
use; insights and developments on how to consume energy more 
efficiently; exploration for added fossil fuel sources (eg, deep well 
drilling, oil shale, coal, fracking, etc.); and finding alternative sources 
of energy (eg, solar, wind, geothermal, nuclear, hydroelectric, and 
biofuel). The social and environmental impacts of energy sources 
and use must also be considered so that human energy use is as 
efficient, non-conflicting, and sustainable as possible (Figure 1) [1].

The aviation industry is leading the way in developing 
renewable sources of aviation fuel. There are research activities 
on every continent looking for the most economic and sustainable 
process. The reason that the aviation industry is so determined is 
because fuel cost represents the majority of the operations cost. 
Each added penny per gallon in the price of jet fuel translates 
into $175 million of additional operational costs annually for U.S.  
airlines [2]. The volatility of the energy market takes a toll on the 
industry every time energy prices rise sharply. Another reason for 
the urgency is the recent and pending regulations that have been 
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Abstract

Algae as a feedstock for commercial biofuels is best suited for sunny and warm areas with abundant fresh, salt, or brackish water. Optimum areas 
worldwide are in the tropics. Logical areas in North America include the Southeast Gulf coast and perhaps New Mexico.  Additional practical areas 
on smaller scale probably lie in metropolitan locations, especially near international airports. The cost-benefit of these endeavors can be enhanced 
when factors such as high-end products alongside collaboration with sewage treatment or other waste water remediation, industrial carbon dioxide 
sequestration, reduced transport distance of fuels, and other aspects of the local economy are taken into consideration. This paper discusses how Oral 
Roberts University and KBI-Best Technologies propose to work with the Tulsa Airport Authority, the City of Tulsa, and local industries to enhance the 
practicality of a local algae biofuels venture.
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implemented and recently announced, which impact industry. 
Directive 2008/101/EC of the European Parliament and Council 
agreed that from 2012, all airlines flying within or into Europe had 
to buy CO2 allowances on the open market or reduce their GHG 
emissions to 97% of average annual emissions for the year 2004-
2006 and this is lowered to 95% as from 2013 [3].

The US Federal Aviation Administration (FAA) has set a goal 
for the US aviation industry to consume one billion gallons of 
renewable jet fuel each year from 2018 onwards (FAA, 2011, p.10). 
This goal is an aggregate of renewable fuel targets for the US Air 
Force, the US Navy, and US commercial aviation. The renewable fuel 
target for commercial aviation represents 1.7% of predicted total 
fuel consumption by US airlines in 2018. The aviation biofuel goal 
is set against a backdrop of a renewable fuel standard for ground 
transportation, which sets minimum annual volume requirements 
for use of advanced biofuels and total renewable fuels that must be 
used through to 2022 [4].

The Obama administration on June 10, 2015 released a 
scientific finding that greenhouse gases from aircraft pose a risk 
to human health, paving the way for regulating emissions from the 
U.S. aviation industry. Airlines produce about 11% of the country’s 
greenhouse gases from transportation sources, or about 3% of total 
greenhouse-gas emissions, according to an analysis of EPA data by 
the International Council on Clean Transportation [5]. Renewable 
fuel development is the most economical way to meet these existing 
and new emission regulations.

United Airlines announced in July 2015 that it would invest 
$30 million in a program that would produce jet fuel from trash. 
Pleasanton, California-based Fulcrum BioEnergy specializes in 
producing both aviation and diesel fuel from ordinary household 
waste. The company has committed to produce as much as 180 
million gallons of this fuel per year. Fulcrum’s process, according 
to spokesperson Karen Bunton, “has been thoroughly vetted by 
numerous third parties including the U.S. Department of Defense 
and the U.S. Department of Agriculture” and has been found to meet 
“all of the aviation industry and military technical requirements 
and specifications” [6].

In July 2015 The Energy Department announced six projects 
that would receive up to $18 million in funding to reduce the 
modeled price of algae-based biofuels to less than $5 per gasoline 
gallon equivalent (gge) by 2019. 

These awards included:

A. Producing Algae and Co-Products for Energy (PACE), 
Colorado School of Mines, Golden, CO. Colorado School of Mines, 
in collaboration with Los Alamos National Laboratory, Reliance 
Industries Ltd., and others, will receive up to $9 million to enhance 
overall algal biofuels sustainability by maximizing carbon dioxide, 
nutrient, and water recovery and recycling, as well as bio-power 
co-generation.

B. Marine Algae Industrialization Consortium (MAGIC), 
Duke University, Durham, NC. Duke University will receive up to 

$5.2 million to lead a consortium including University of Hawaii, 
Cornell University, Cellana and others to produce protein-based 
human and poultry nutritional products along with hydrotreated 
algal oil extract [7].

The race for alternative sources of energy is picking up 
worldwide, with informed concerns voiced by experts such as 
Rex W. Tillerson, ExxonMobil Chairman and CEO: “In the decades 
ahead, the world will need to expand energy supplies in a way that 
is safe, secure, affordable and environmentally responsible. The 
scale of the challenge is enormous and requires an integrated set of 
solutions and the pursuit of all economic options” [8].

To break the U.S. dependence on imported petroleum for 
producing various liquid transportation fuels, numerous initiatives 
for biofuels development are underway. The Energy Independence 
and Security Act of 2007 (EISA) specifies a target quantity of 36 
billion gallons of renewable fuels (Renewable Fuels Standard or 
RFS) to be annually produced in the U.S. by 2022. Of this amount, 
21 billion gallons would come from advanced biofuels; 16 or more 
billion gallons of the 21 billion gallons is to be provided by cellulosic 
ethanol and the balance would come from other advanced biofuels.

Biopower is electricity produced from a wide range of biomass 
resources. The use of biopower is one way to help meet national 
goals for the use of clean, renewable energy (e.g., Renewable 
Portfolio Standards or RPS). Biomass is a base load renewable 
energy source that is readily available across the U.S. Biomass offers 
a renewable energy solution in areas where other renewable are 
not available. To achieve these goals, it is essential to ensure that 
cost competitive feedstock’s of appropriate quality for bioenergy 
production are widely and sustainably available in sufficient 
quantities. Because the feedstock cost is a major element in the 
production of bioenergy, research is needed to ensure the cost-
effective supply of major biomass resources to biorefineries, so that 
they can be converted to biofuels, biopower, and bioproducts.

One of the fastest developing areas of alternative energy sources 
is biofuels, where the ultimate source is “organic”-i.e., of biological 
origin such as used cooking oil, plant seed, plant biomass, sewage, 
landfill, etc. Plant biomass includes terrestrial and aquatic sources, 
with the latter represented by algae. Microalgae are particularly 
attractive sources of sustainable energy for a multitude of reasons 
summarized in Table 1.

Companies such as Synthetic Genomics in partnership with 
ExxonMobil [8], Sapphire Energy [9], Algenol [10], Solarzyme 
[11], Petro Algae [12], Solix Biofuels [13], Origin Oil [14], Cellana 
[15], Solix Biosystems [16] and others have made rapid advances 
in developing commercial operations that are economically viable, 
expandable, adaptable, and environmentally sound. Some of 
these companies are focusing on genetically modified algae while 
others are seeking other (“added”) benefits (eg, CO2 sequestration 
and/or nutrient remediation) or higher-value products that 
can be produced from algae such as nutritional supplements, 
pharmaceuticals, and omega-3 fatty acids.
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Table 1: Microalgae are particularly attractive sources of sustainable energy for a multitude of reasons.

S.no Benefits of Using Algae for Biofuels

1 Non-competitive with food crops and land use (as long as ponds aren’t built on agricultural land).

2 By most, but not all, estimates, prospective/proven oil content from algae biomass is orders of magnitude higher than from other feedstock’s 
like corn, sugar cane, Jatropha, etc.

3 Algae need CO2 to photosynthesize and can thus be used to sequester CO2 from industrial sources of flue and flaring gas. Algae-based fuels 
are thus C-neutral or even C-positive (i.e., more C-capturing than releasing).

4 Algae can be used to remediate high-nutrient water sources such as sewage treatment plants, agricultural runoff, and landfill leach ate basins. 
This linkage not only cleans up the water but may also lower the cost for nutrients needed to culture algae.

5 End-products can be biofuel along with other higher value products such as feed (protein), cosmetics, pharmaceuticals, and health-related 
products (e.g., omega-3 fatty acids).

6 Different species of algae can be grown in polluted, saline, brackish, and freshwater.

7 Algae can be used as one component of an aquaculture-centered system where fish like Tilapia are grown for food in a recirculating and 
hydroponic system.

8 Algae don’t contribute to acid deposition (ie, no SO2 emissions).

9
Some species of bluegreen algae utilize N2 to produce NO3 (a process called “biological nitrogen fixation”), thus sequestering atmospheric 
nitrogen and eliminating or at least lessening the need for nitrogen fertilizers. This can help reduce the need for nitrogen fertilizers and, 

more importantly, remediate water pollution and help confront the expanding “Dead Zone” in the Gulf of Mexico.

Thorough reviews on the culture, harvest, conversion, and 
practical use of algae for biofuel and other products are given by 
Chisti [17] & Sharma et al. [18]. Informative “life cycle analyses” 
that evaluate all of the pros and cons of selected pathways for 
biofuel production must be utilized and closely evaluated [19].  
Some lifecycle analyses express concern for water usage for 
biofuels (EROWI = energy return on water investment). Corn to 
ethanol, Jatropha, and other non-algae plant feedstock for biofuels 
use too much water (as does fracking!), fertilizers, agricultural 
land, and energy, and thus give a “bad name” for biofuels. Algae, 
particularly when grown in saline/brackish or polluted waters 
(eg, wastewater), have a much more positive “scorecard”, but the 
public doesn’t always get to hear about the benefits of algae vs. 
the “concerns” of biofuels in general. There’s still a lot of needed 
“unpacking” and clarification!

Economical, substantial, reliable, and dependable 
(uninterrupted) sources of fuel are especially important to a nation’s 
military and airlines. Organizations such as the Commercial Aviation 
Alternative Fuels Initiative (CAAFI) have “sought to enhance energy 
security and environmental sustainability for aviation by exploring 
the use of alternative jet fuels” [20]. The needs of each airport will 
vary depending on local weather, infrastructure, needs, available 
feedstock, carbon dioxide and nutrient sources, and other factors 
[21].

In order to meet the sustainability goals outlined in the 
beginning of this paper, an algae aviation fuel production concept 
must overcome the economic barriers that have been identified by 
previous studies. One study’s projected cost of algae produced in 
a raceway is $0.15 to $0.20 per pound and $1.95 per pound when 
produced in a photo bioreactor (PBR). This compares to $0.10 to 
$0.20 per pound for wood pellets delivered to UK power plants 
[22]. Most of the cost difference between raceway and PBR is 
capital only.  Other significant costs when using algae biomass as a 
feedstock for fuel production are dewatering and transportation. All 

these things identify a need to optimize the production, dewatering, 
processing and transportation methods for Algae Aviation Fuels, 
(AAF), projects.

Practical Model for Metropolitan Areas

This paper proposes a practical model for Tulsa, Oklahoma 
and other metropolitan areas to produce biodiesel and jet fuel 
from algae using waste carbon dioxide and nutrients from local 
sources. We propose to use algae to produce up to 50% of the 
aviation fuel consumed by the Tulsa Airport by utilizing up to 1700 
acres of adjacent land to the North, East and South of the Airport 
that cannot be used for other development purposes. These lands 
could produce up to 15-million gallons of Bio-Aviation fuel and 100 
million pounds of feed products annually and generate up to $60 
million in annual revenue.

We - Joe Moore, owner of KBI-Best Technologies (a local 
company, hereafter called KBI) and John Korstad (Professor of 
Biology at Oral Roberts Univ., hereafter called ORU) - have been 
working together on algae production and processing for five 
years. We have been growing algae at the KBI plant and working 
closely with the Tulsa Airport Authority to use lands surrounding 
the airport to grow and process the algae oil into bio-aviation fuel.

As a result of the five years of research effort, a process has 
been developed that addresses the challenges faced by the aviation 
industry as it searches for a sustainable renewable fuel source. 
The resulting AAF process is a combination of several proven 
technologies and some unique process that have been developed 
over the last five years. The centerpiece of the process is the former 
Air Force Plant #3 Industrial Waste Treatment Plant, (IWTP). This 
seven acre, fifteen million dollar facility, adjacent to the Tulsa 
International Airport, (TUL), will act as the processing hub of the 
algae growing and nutrient gathering processes. The IWTP plant 
proximately to waste treatment, waste disposal, CO2 Source, 
growing acreage and fuel delivery point makes it an ideal location 
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for the collection and processing of algae and producing aviation 
fuel along with associated high value co-products.

An important part of AAF process is the ability to produce the 
required electrical power and heat on site, using the renewable 
byproducts of the algae processing. With the products of 
combustion being water, carbon dioxide and nitrogen compounds, 
they serve to provide the return of nutrients and compounds back 
to the algae growing system. A conventional electrical cogeneration 
process, using internal combustion engines fueled by synthesis gas 
from reactors drive generators and produces heat from exhaust and 
jacket water. The acreage surrounding TUL will require investment 
to produce the quantity of algae necessary to feed the process. Open 
ponds are not recommended around airports due to the waterfowl 
that can concentrate and interfere with air traffic. An integrated 
algae growing system (IAGS), is proposed that will provide a closed 
system for the optimum production of selected algae species. 
A small scale IAGS is planned to determine the installation and 
operational cost. The goal is to achieve capital and operation costs 
similar to the raceway approach.

The collection and initial dewatering of the algae will be 
performed in existing tankage and clarifiers located on the IWTP 
property. Algae bearing water will be circulated through the system, 
reducing the concentration and adding the required nutrients 
and compounds, before the slurry is sent back to the IAGS. The 
concentrated algae will be stored in existing tankage, where it will 
be either sent to existing filter presses for further concentration 
into a cake or fed to the algae slurry processing system. The drying 
of the filter cake for oil removal takes a great deal of heat and can be 
the single highest operating cost in the process. Sufficient dry algae 
must be diverted from fuel and feed production, in order to operate 
the electrical cogeneration process and produce the necessary heat 
to dry the algae.

In addressing the problem of drying the algae for oil separation, 
we were faced with the cost and time constraints associated with 
dewatering and drying. A method was sought that would allow oil 
separation without requiring dewatering. A theoretical approach 
was proposed that would take the water containing concentrated 
algae and heating it in a pressurized vessel to achieve oil separation 
as demonstrated by researchers. Kusdiana & Saka [23], Pinnarat 
[24], Savage & Rebacz [25], Brown & Duan [26]. Their findings have 
shown that this “pressure cooker” process effectively decomposes 
all of the algal cell constituents (lipids, proteins, and carbohydrates); 
releases hydrogen, carbon monoxide, carbon dioxide, methane and 
other hydrocarbons; and ultimately releases more total energy. 
This depolarization process is applicable for other feedstocks such 
as switch grass, crop residue, livestock waste, food waste, and 
woody biomass.

Another improved but more expensive method of concentrating 
algae from water is offered by the Origin Clear Company [27]. The 
technical approach proposes to use participating Oral Roberts 
University (ORU) Biology, Chemistry, and Engineering faculty 
to outline and evaluate possible methods for the preparation, 

processing and measurement of conversion products. Initial 
analysis will be performed to determine biomass conversion at 
various temperatures and pressures. Different types of biomass 
will be tested for the extent of depolymerization at varying 
temperatures, pressures and concentration. Once university 
results are accumulated and evaluated, KBI will build a pilot-sized 
reactor and run the tests at larger quantities and under process 
plant conditions. The results of these tests will be compared to the 
laboratory scale tests, and a scale up version of the system will be 
developed for a small-scale operational proof of concept. These 
results will lead to a final design for production of 1000 tons per 
day.

In the case of high oil bearing algae strains, the economics of 
drying the algae may prove to be outweighed by the improved 
efficiency of oil extraction. In this case, algae will be mechanically or 
chemically processed to extract the oil. The remaining dried algae 
can be used as high value products such as nutritional supplements, 
animal or fish feed, pharmaceuticals or further processed in a 
thermal reactor. Once the oil is extracted by either the wet or dry 
method, it must be further processed to produce the aviation fuel. 
There are currently three main research strategies for alternative 
aviation fuels as following: fatty acid esters (FAEs), hydro processed 
renewable jet - synthesis paraffin kerosene (HRJ - SPK), and Fischer-
Tropsch jet - synthesis paraffin kerosene (FTJ - SPK). FAEs, which 
are produced like biodiesel, derived from the transesterification of 
the triglycerides and fatty acids in algae, vegetable, animal or waste 
oils. It uses simple technology, with low cost and high efficiency 
[28]. A complete evaluation of these technologies is being made, 
and a selection will made based on the best performance and 
required capacity.

HRJ - SPK is produced by hydrogenative refining of the 
triglycerides and fatty acids in the vegetable, animal or waste oils. 
HRJ production firstly requires deoxygenation of triglycerides and 
fatty acids to produce C8-C22 normal paraffin. In a second step, 
the resulting hydrocarbons are further cracked and isomerized to 
reduce the carbon number of the paraffin’s into the boiling range 
of the jet fuel (number of carbon C8-C16). Honeywell’s UOP is 
currently the only large-scale producer of HRJ [3].

FTJ - SPK is produced from coal, biomass, or natural gas feedstock 
through gasification followed by Fischer-Tropsch synthesis process. 
The synthesis gas (i.e., mixture of carbon monoxide and hydrogen) 
produced in the gasification process is then catalytically reacted 
to form a mixture of long-chain paraffin’s in the Fischer-Tropsch 
synthesis process. These products are further hydro processed 
such as through HRJ [3]. To further optimize the AAF process, we 
propose to use nutrients and carbon dioxide from local sources to 
promote algal growth while also lowering wastewater and flue gas 
emissions, and ultimately lowering the cost of not only culturing 
the algae but also meeting EPA mandates for water and air quality 
[29]. Potential local sources of nutrients include wastewater 
effluent from the City of Tulsa’s Northside sewage treatment plant 
[30], Waste Management’s Quarry Landfill [31], and American 
Environmental Landfill [30]. Potential local sources of CO2 include 
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flue gas from the Eagle Materials Cement Plant [32] and Holly 
Refinery [33]. 

Benefits

The benefit of the successful implementation of this proposal 
will hopefully lead to a cheaper, more dependable, more plentiful, 
more environmentally favorable, and thus more sustainable source 
of jet fuel. This will go a long way toward lessening the problems 
discussed earlier. Further benefits include gaining additional 
experience in these complex processes, and gaining ideas on 
how to improve the production process of biofuels from algae. 
This information will also be used to augment and improve the 
information facilitated in various courses at ORU. Student interns 
will benefit from being mentored by the knowledgeable people 
at industries and facilities involved in this project, and from the 
general research experience that will culminate with their Senior 
Research Paper. Student interns can also collaborate with professors 
and industry personnel in presenting their results at professional 
meetings and submitting research papers to professional journals. 
The personnel at local industries involved with this project will 
also benefit from this collaboration through use their equipment 
and expertise to test better methods of producing or procuring 
renewable energy.

Technical Objectives

The technical objectives of this project are as follows:

A. Determine the extent of depolymerization that occurs 
for algae and other biomass in water solutions at various 
concentrations, temperatures, and pressures.

B.   Determine the energy balance of the process and determine 
optimum set points for a laboratory scale proof of concept.

C.    Determine the process and practicality of utilizing nutrients 
and CO2 from local sources.

D. Determine methods to produce additional, higher-value 
products that can be produced from algae and other feedstock such 
as nutritional supplements, pharmaceuticals, and omega-3 fatty 
acids.

E.  Determine overall economic benefits of this process at 
various plant sizes, using a variety of feed stocks.

F.    Complete preliminary design for construction and evaluation 
of a pilot scale process for this proposal.

Overall Goal and Conclusion

The overall goal of this project is to develop a simple and efficient 
process that can be shared with a wide group of people - university 
researchers; business people in the energy industry; farmers and 
ranchers; government officials and staff; the National Energy 
Policy Institute [34], which is located in Tulsa and has national 
and international influence; and the general public. Our hope 
is that, together, we can lessen our dependency on foreign oil by 
developing abundant local sources of energy that are non-polluting 
(sequestering vs. releasing nutrients and carbon dioxide), don’t 

compete with food sources for human and animal consumption 
(e.g., corn), are competitive or even favorable to current fossil fuels, 
and help improve the local economy.
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